Делитель напряжения

В радиоэлектронике правило делителя напряжения является простым и важнейшим схемным принципом, используемым для того, чтобы на выходе иметь пониженное напряжение. Простейшим примером является резистивный делитель напряжения, состоящий из двух сопротивлений, включенных в схему последовательно с выводом между ними. Используя входное Uвх, можно получить Uвых, являющееся частью от Uвх.

Модуль делителя напряжения

Модуль делителя напряжения

В большинстве случаев делитель напряжения на резисторах используется с целью  уменьшения Uвх, для создания опорного напряжения и в низкочастотных схемах как сигнал аттенюатора. Очень эффективно его применение в электросхемах на постоянном токе и при относительно низких частотах, там, где частотный отклик требуется в широком диапазоне. Потенциальные делители часто размещаются непосредственно после ИП, чтобы обеспечить передачу необходимого сигнала в различные части схемы.

Компонентами схемы могут служить и конденсаторы.

Принцип делителя напряжения

Это правило применяют при расчетах электросхем, упрощающих решение. Также оно действительно и для простых схем.

Важно! Основная концепция правила: напряжение делится между двумя резисторами, соединенными последовательно, в прямой зависимости от их сопротивления.

Когда выполняется практический расчет делителя напряжения, составляется электросхема, и выводятся необходимые формулы.

Виды схем

Несмотря на относительные различия в электросхемах, все они имеют общие признаки. Резистор R1 всегда подсоединяется в непосредственной близости к Uвх, а R2 – к заземляющей клемме. Падение напряжения на резисторном элементе R2 – Uвых является разделенным напряжением электроцепи.

Разновидности схем делителя напряжения

Разновидности схем делителя напряжения

Расчетные формулы

Допустим, есть схема с двумя резисторами. Расчет делителя напряжения на резисторах сводится к применению математических формул закона Ома и закона Кирхгофа.

  1. Из закона Ома:

U = I x R, тогда U1 = I x R1, а U2 = I x R2,

где U – входное напряжение;

  1. Применяя закон Кирхгофа о том, что алгебраическая сумма напряжений вокруг замкнутого контура равна нулю, можно записать следующие формулы:

U = U1 + U2, следовательно, U = U1 + U2;

  1. Поэтому U = I x R1 + I x R2, отсюда I = U/(R1 + R2);
  2. Если подставить полученные выводы в формульную запись закона Ома, то получится падение напряжения на отдельных резисторных элементах:

U1 = R1 x U/(R1 + R2) и U2 = R2 x U/(R1 + R2).

Напряжение, распределенное на двух резисторах, пропорционально соотношению их сопротивлений. Это отношение не может быть больше 1 для любых значений R1 и R2, поэтому Uвх сокращается до Uвых с фиксированным соотношением, определяемым величинами R1 и R2.

Расчетная схема делителя напряжения

Расчетная схема делителя напряжения

Важно! Это правило распространяется и на цепи, рассчитанные более, чем на два резистора. Например, U3 = R3 x U/(R1 + R2 + R3) и U4 = R4 x U/(R1 + R2 + R3 +R4).

Полученное соотношение – это формула делителя напряжения. Именно по ней выполняется расчет самостоятельно или в калькуляторе онлайн для делителя напряжения.

Если заданы величины напряжения выхода, то можно выполнить расчет резистора, используя данные формулы:

  • R1 = U1 x R/U;
  • R2 = (U2 x R/U) – R1;
  • R3 = (U3 x R/U) – (R1 + R2) и т.д.

Пример расчета

Допустим, полное сопротивление потенциометра составляет 15 Ом. Скользящий контакт расположен в точке, где сопротивление делится на 10 Ом и 5 Ом. Переменный резистор подключен к батарее 2,5 В. Как рассчитать выходное напряжение, подключенное к секции 5 Ом резистора?

Согласно формуле:

U2 = R2 x U/(R1 + R2) = 5 x 2,5/(5 + 15) = 0,625 В.

Все эти вычисления можно произвести с помощью калькулятора для делителя напряжения, просто введя нужные данные.

Применение делителя напряжения

Делитель напряжения применяют только там, где нужно уменьшить входной сигнал. Главным образом его использование оправдано в таких электросхемах, где энергоэффективность не требуется учитывать серьезно.

Сферы использования:

  1. В повседневной жизни наиболее часто используется в потенциометрах. Наглядный пример потенциометра – ручка регулирования громкости в музыкальных системах. Базовая конструкция потенциометра включает три вывода;
Потенциометр

Потенциометр

  1. Для регулирования уровня сигнала в измерительных схемах (мультиметр и мост Уитстона);
  2. Если вместо сопротивления R2 установить фоторезистор, сопротивление которого зависит от освещенности, то выходное напряжение U2 будет меньшим под световым воздействием и большим в темноте. Другой способ использования – установить термосопротивление вместо R2. U2 – низкое, когда температура повышается, и наоборот. Причем общее напряжение в цепи остается неизменным и равно напряжению аккумулятора;
  3. Емкостные делители можно использовать в передаче мощности для измерения высокого напряжения и для компенсации емкостной нагрузки.

Реальные резисторные элементы всегда имеют приближения – «плюс-минус» от их номинального показателя. Если точность делителя напряжения является важной для конкретной схемы, лучше использовать элементы с жесткими допусками. Также следует проверить их приемлемую производительность в ожидаемых параметрах.

Видео

Оцените статью:
Оставить комментарий