Принцип работы умножителя напряжения
Содержание
- 1 Модели для подсветок
- 2 Умножитель напряжения на диодах и конденсаторах
- 3 Умножители напряжения параллельные, последовательные, двухполупериодные, однополупериодные
- 4 Преимущества и недостатки
- 5 Устройства для накачки лазера
- 6 Модели для ионизаторов воздуха
- 7 Схема преобразователя-инвертора на микросхеме КР1006ВИ1
- 8 Схемы выпрямителей с умножением напряжения
- 9 Принцип действия. Основные показатели
- 10 Практические схемы УН для КВ и УКВ
- 11 Принцип работы умножителя напряжения
- 12 Управление температурным коэффициентом напряжения
- 13 Умножитель напряжения ⋆ diodov.net
- 14 Технические характеристики
- 15 Принцип работы удвоителя
- 16 Уменьшение внутреннего сопротивления
- 17 Принцип работы[править]
Модели для подсветок
Удвоители для подсветок работают только при малой частоте, а номинальное напряжение, как правило, составляет около 10 В. У моделей могут устанавливаться конденсаторы разных типов. Расчет удвоителя напряжения осуществляется исходя из величины выходной проводимости и сопротивления.
Коэффициент перегрузки в основном равняется 2 А. Фильтры устанавливаются на изоляторах и обладают хорошей защищенностью. У многих моделей применяется несколько обкладок. Стабилизаторы встречаются не сильно часто. Резисторы используются как с переходником, так и без него. Найти модификации для подсветки на рынке довольно просто. Показатель фазового сопротивления у них стартует от 30 Ом.
Умножитель напряжения на диодах и конденсаторах
Определение умножителя напряжения
Их применяют в радиоэлектронике: медицинской и телевизионной аппаратуре, измерительной технике, бытовой технике и др. Умножитель напряжения составляют диоды и конденсаторы, которые соединяют специальным образом. Умножители способны сформировать напряжение до вольт, при этом имеют небольшую массу и размер. Умножители просты в изготовлении, их несложно рассчитываются.
Однополупериодный умножитель
На рис.1 приведена схема однополупериодного последовательного умножителя.
В течение отрицательного полупериода напряжения происходит зарядка конденсатора через диод , который открыт. Конденсатор заряжается до амплитудной величины приложенного напряжения . В течение положительного полупериода заряжается конденсатор через диод до разности потенциалов . Далее в отрицательный полупериод конденсатор заряжается через диод до разности потенциалов . В очередной положительный полупериод конденсатор заряжается до напряжения . При этом умножитель запускается за несколько периодов изменения напряжения. Напряжение на выходе постоянное и оно является суммой напряжений на конденсаторах и , которые постоянно заряжаются, то есть составляет величину, равную .
Обратное напряжение на диодах и рабочее напряжение конденсаторов в таком умножителе равно полной амплитуде входного напряжения
При практической реализации умножителя следует обращать внимание на изоляцию элементов, чтобы не допускать коронного разряда, который может вывести прибор из строя. Если необходимо изменить полярность напряжения на выходе, то меняют полярность диодов при соединении
Последовательные умножители применяют особенно часто, так как они универсальны, имеют равномерное распределение напряжения на диодах и конденсаторах. С их помощью можно реализовать большое количество ступеней умножения.
Применяют, также параллельные умножители напряжения. Для них необходима меньшая емкость конденсатора на одну ступень умножения. Но, их недостатком считают увеличение напряжения на конденсаторах с ростом количества ступеней умножения, что создает ограничение в их использовании до напряжения выхода около 20 кВ. На рис. 2 приведена схема однополупериодного параллельного умножителя напряжения.
Для того чтобы рассчитать умножитель следует знать основные параметры: входное переменное напряжение, напряжение и мощность выхода, необходимые размеры (или ограничения в размерах), условия при которых умножитель будет работать. При этом следует учесть, что напряжение входа должно быть менее чем 15 кВ, частота от 5 до 100 кГц, напряжение выхода менее 150 кВ. Температурный интервал обычно составляет -55. Обычно мощность умножителя составляет до 50 Вт, но встречаются и более 200 Вт.
Для последовательного умножителя, если частота на входе в умножитель постоянна, то выходное напряжение вычисляют при помощи формулы:
где — входное напряжение; – частота напряжения на входе; N – число ступеней умножения; C – емкость конденсатора ступени; I – сила тока нагрузки.
Умножители напряжения параллельные, последовательные, двухполупериодные, однополупериодные
А не забацать ли нам с утреца электроэффлювиальный излучатель?
Наполнить атмосферу лёгким отрицательным аэроионом —
чтоб не слабее воздуха гор, соснового леса или морского прибоя.
Что ещё надо человеку, чтобы встретить безмятежную старость?
А надо-то всего ничего — фруктовый кефир и источник напряжения на пару-тройку десятков киловольт.
Трансформатор на такие напряжения — штука нешуточная, специфическая, подвластная не каждому энтузиасту.
Значительно более простым решением будет использование умножителей напряжения, находящих место не только в радиолюбительских
поделках, но и широко применяющихся в электронных устройствах промышленного производства.
Происходит это благодаря приятным свойствам умножителей — возможности формировать высокое, до нескольких десятков и сотен тысяч вольт,
напряжение при малых габаритах, массе и простоте расчёта и изготовления.
Приведём основные типы умножителей напряжения.
Рис.1 Рис.2
Изображённый на Рис.1 умножитель напряжения относится к последовательным несимметричным умножителям (или несимметричным умножителям
2-го рода).
Подобные устройства наиболее универсальны, напряжение на диодах и конденсаторах распределены равномерно, можно реализовать большое
число ступеней умножения.
В данной схеме все конденсаторы, за исключением С1, заряжаются до удвоенного амплитудного напряжения 2×U, к конденсатору С1 приложено
амплитудное напряжение U, таким образом, рабочее напряжение конденсаторов и диодов получается достаточно низким.
Необходимая ёмкость конденсаторов в этой схеме определяется по приближенной формуле:
С = 2,85×N×Iн / (Кп×Uвых) = 2,85×N / (Кп×Rн), Мкф ,
где
N—кратность умножения напряжения;
Iн — ток нагрузки, мА;
Кп — допустимый коэффициент пульсаций выходного напряжения, %;
Uвыx—выходное напряжение, В.
Ёмкость конденсатора С1 должна в 4 раза превышать расчётное значение С.
Максимально-допустимый ток через диоды должен как минимум в 2 раза превышать ток нагрузки Iн.
На Рис.2 приведена схема параллельного несимметричного умножителя (или несимметричного умножителя 1-го рода).
Для этого вида умножителей требуются меньшие значения ёмкостей конденсаторов по сравнению с последовательными аналогами,
однако такой их недостаток, как пропорциональный рост напряжения на конденсаторах с увеличением числа ступеней, ограничивает
их применение в устройствах со значительными величинами выходных напряжений.
При одинаковых выходных токах, величины ёмкостей конденсаторов C4 и C6 в параллельном умножителе меньше, чем в последовательном
кратно количеству ступеней. Так, если в последовательном ёмкость конденсатора С6 — 100 МкФ, то для трёхступенчатого параллельного
умножителя потребуется ёмкость 100 / 3 = 33 МкФ.
Представленная формула расчёта ёмкостей умножителей верна для частоты напряжения сети — 50Гц.
Однако, наиболее эффективно использование умножителей напряжения при их питании напряжением высокой частоты от специального преобразователя.
В этом случае величины ёмкостей уменьшаются пропорционально кратности увеличения частоты преобразователя.
Приведу для наглядности калькулятор для расчёта элементов умножителей напряжения.
Здесь Rн = Uвых / Iн, либо Rн = Uвых² / Pн.
Количество ступеней умножителя нельзя увеличивать до бесконечности — с ростом числа секций их вклад в увеличение выходного напряжения
быстро уменьшается. К тому же представленные несимметричные умножители напряжения являются однополупериодными и не обладают высокой
нагрузочной способностью.
В связи с этим, при необходимости дальнейшего наращивания выходного напряжения и мощности, подводимой к нагрузке свыше 50 Вт — прямая
дорога у нас лежит к симметричным двухполупериодным умножителям напряжения.
Симметричная схема умножения напряжения получается, если запараллелить входы двух несимметричных схем, рассчитанных в таблице,
у одной из которых необходимо сменить полярность подключения электролитических конденсаторов и диодов.
В результате вырисовываются следующие схемы.
Рис.3 Рис.4
На Рис.3 приведена схема последовательного симметричного двухполупериодного умножителя, на Рис.4 — схема параллельного
симметричного двухполупериодного умножителя напряжения.
При необходимости поиметь двухполярное питание, точку 0U следует подключить к земляной шине.
Преимущества и недостатки
Говоря о преимуществах умножителя напряжения, можно отметить следующие:
Возможность получать на выходе значительные величины электричества – чем больше звеньев цепи, тем больший коэффициент умножения получится.
- Простота конструкции – все собрано на типовых звеньях и надежных радиоэлементах, редко выходящих из строя.
- Массогабаритные показатели – отсутствие громоздких элементов, таких как силовой трансформатор, уменьшают размеры и вес схемы.
Самый большой недостаток любой схемы умножителя в том, что невозможно получить при помощи его большой ток на выходе для питания нагрузки.
Устройства для накачки лазера
Удвоитель напряжения для накачки лазера работает при высокой частоте. Модули для устройств используются лишь на конденсаторной основе. Многие модели показывают хорошую проводимость, но при этом номинальное напряжение составляет не более 10 В. В приборах применяются диоды разных типов.
Также стоит отметить, что на рынке представлены модификации с открытыми стабилизаторами. У них нет проблем с пригревом, однако модели не способны обеспечивать высокую частотность. Подключение устройств осуществляется через триоды. Также есть модификации на трансиверах. У них высокий параметр полюсной проводимости. Однако к недостаткам можно отнести быстрый износ конденсаторов, вызванный тепловыми потерями.
Модели для ионизаторов воздуха
У моделей очень часто встречаются канальные конденсаторы, у которых высокая емкость. Данные устройства выделяются быстрым процессом преобразования, а рабочая частота у них составляет примерно 33 Гц. Расширители у моделей используются проводникового типа. Они способны работать в экономном режиме и потребляют мало электроэнергии.
Стабилизаторы всегда устанавливаются контактного типа. Некоторые модели работают от импульсного триода. Приводимость составляет не менее 10 мк. Если рассматривать удвоитель постоянного напряжения, то у него имеются переходные конденсаторы, у которых низкая емкость. Показатель чувствительности в данном случае стартует от 6 мВ. Данные устройства замечательно подходят для компараторов.
Схема преобразователя-инвертора на микросхеме КР1006ВИ1
Для схем преобразователей напряжения, построенных по принципу умножителей импульсного напряжения, могут быть использованы самые разнообразные генераторы сигналов прямоугольной формы.
Такие генераторы часто строят на микросхеме КР1006ВИ1 (рис. 14) . Выходной ток этой микросхемы достаточно большой (100 мА) и часто можно обойтись без каскадов дополнительного усиления.
Генератор на микросхеме DA1 (КР1006ВИ1) вырабатывает прямоугольные импульсы, частота следования которых определяется элементами R1, R2, С2. Эти импульсы с вывода 3 микросхемы подаются на умножитель напряжения.
К выходу умножителя напряжения подключен резистивный делитель R3, R4, напряжение с которого поступает на вход «сброс» (вывод 4) микросхемы DA1.
Параметры этого делителя подобраны таким образом, что, если выходное напряжение по абсолютной величине превысит входное (напряжение питания), генерация прекращается. Точное значение выходного напряжения можно регулировать подбором сопротивлений резисторов R3 и R4.
Рис. 14. Схема преобразователя-инвертора напряжения с задающим генератором на микросхеме КР1006ВИ1.
Характеристики преобразователя — инвертора напряжения (рис 14) приведены в табл. 2.
Таблица 2. Характеристики преобразователя-инвертора напряжения (рис. 14).
Uпит, В |
Івых, мА |
Iпотр, мА |
КПД, % |
6 |
3,5 |
13 |
27 |
7 |
6 |
22 |
28 |
8 |
11 |
31 |
35 |
10 |
18 |
50 |
36 |
12 |
28 |
70 |
40 |
Схемы выпрямителей с умножением напряжения
Схемы с умножением напряжения целесообразно применять для получения достаточно высоких выпрямленных напряжений при малых токах нагрузки. Эти схемы применяют для питания электронно-лучевых трубок, фотоумножителей, в установках для испытания электрической прочности.
Схемы выпрямителей, работающих с умножением напряжения, содержат несколько выпрямителей с емкостным фильтром, выходные напряжения которых суммируются.
4.1. Однофазная несимметричная схема удвоения напряжения
Схема на рис.5 представляет собой два однофазных однополупериодных выпрямителя. Первый выпрямитель VD1, C1 является однополупериодным выпрямителем с параллельно включенным диодом. За счет его работы конденсатор C1 заряжается до амплитудного напряжения U2. На нем образуется постоянное напряжение UC1=U2m. На диоде VD1 образуется пульсирующее напряжение. Максимальное значение напряжения на нем
UVD1,MAX=UC1+U2m .
Это пульсирующее напряжение окончательно выпрямляется и сглаживается обычным выпрямителем с емкостной нагрузкой VD2, C2. В итоге получаем выходное напряжение U0 примерно равное удвоенному значению амплитуды напряжения вторичной обмотки трансформатора.
Рис. 5. Несимметричная схема удвоения напряжения.
Частота пульсации выпрямленного напряжения на нагрузке равна частоте сети.
Обратное напряжение на диодах равно удвоенной амплитуде напряжения вторичной обмотки трансформатора.
Основным недостатком схемы является то, что основная частота пульсации выпрямленного напряжения, равна частоте сети.
Для увеличения кратности выпрямленного напряжения увеличивают число диодов и конденсаторов, включая их аналогично описанной схеме. На рис. 6, а показана схема умножения напряжения, где в целях получения различной кратности умножения напряжения предусмотрены соответствующие варианты подключения нагрузки к схеме (показаны пунктиром), а именно: присоединяя нагрузку к точкам б, в и г схемы, получим умножение напряжения соответственно в 2, 3 и 4 раза. В этой схеме все конденсаторы с нечетными номерами (С1, С3) заряжаются в один полупериод напряжения и2, а с четными номерами (С2, С4) — в другой полупериод.
Чем выше кратность умножения напряжения, тем большими будут пульсации выпрямленного напряжения при одинаковой емкости конденсаторов, так как для зарядного и разрядного токов они включены последовательно.
Рис.6. Несимметричная схема умножения напряжения в 4 раза
Недостатки таких выпрямителей аналогичны недостаткам однополупериодного однофазного выпрямителя с емкостной нагрузкой. Кроме того, они обладают увеличенным внутренним сопротивлением из-за последовательного включения диодов.
4.2. Двухфазные симметричные схемы
Двухфазные симметричные схемы умножения можно; получить соединением нескольких несимметричных схем. На рис.7 показана двухфазная схема выпрямления с умножением напряжения в 6 раз.
Рис. 7. Симметричная схема умножения напряжения
Конденсаторы с нечетными номерами (С1, С3, С5, C1’, С3’, С5’) заряжаются токами соответствующих диодов один раз в период напряжения вторичной обмотки, конденсаторы с четными номерами (С2, С4, С6) — дважды, поэтому частота пульсации выпрямленного напряжения в 2 раза больше частоты сети.
Принцип действия. Основные показатели
Простейший умножитель Vбэ — двухполюсник, состоящий из биполярного транзистора Т1 под управлением делителя напряжения R1R2. Внутреннее сопротивление цепи, в которую включается этот двухполюсник, должно быть достаточно велико, чтобы ограничивать коллекторный ток T1 на безопасном уровне; в практических схемах ток через умножитель обычно задаётся источником тока. Сопротивление делителя выбирается достаточно низким, чтобы протекающий через R2 ток базы Т1 был намного ниже тока делителя. В этих условиях транзистор охвачен отрицательной обратной связью, благодаря которой напряжение коллектор-эмиттер Т1 (Vкэ) устанавливается на уровне, пропорциональном напряжению на его эмиттерном переходе (Vбэ). Tемпературный коэффициент (ТКН) Vкэ и внутреннее сопротивление между коллектором и эмиттером Rкэ подчиняются той же зависимости:
- Vкэ = k·Vбэ;
- TKH (Vкэ) = dRкэ/dT = k·dRбэ/dT ≈ −2,2·k мВ/K при 300 К;
- Rкэ = k (vt / Iэ),
- где коэффициент умножения k = 1+R2/R1, а vt — температурный потенциал, пропорциональный абсолютной температуре (для кремния при 300 К примерно равен 26 мВ).
Вольт-амперная характеристика (ВАХ) идеализированного умножителя Vбэ совпадает с ВАХ транзистора в диодном включении, растянутой вдоль оси напряжений в k раз.
Практические схемы УН для КВ и УКВ
Радиолюбителям-коротковолновикам, занимающимся самостоятельным изготовлением радиоаппаратуры, знакома проблема изготовления хорошего силового трансформатора для выходного каскада передатчика или трансивера.
Эту проблему поможет решить схема, показанная на рис.2. Достоинством практической реализации является использование готового, не дефицитного в связи с уходом старой техники, силового трансформатора (СТ) от унифицированного лампового телевизора (УЛТ) второго класса, который можно использовать в качестве силового трансформатора для питания усилителя мощности (УМ) радиостанции 3 категории.
Рекомендуемое техническое решение позволяет получить от СТ все необходимые выходные напряжения для УМ без каких либо доработок. СТ выполнен на сердечнике типа ПЛ, все обмотки конструктивно выполнены симметрично и имеют по половине витков на каждой из двух катушек.
Такой СТ удобен как для получения необходимого анодного напряжения, так и напряжения накала, т.к. допускает использование в качестве выходной в УМ как лампы с 6-вольтовым накалом (типа 6П45С), так и лампы (типа ГУ50) с 12-вольтовым накалом, для чего необходимо только соединить обмотки накала параллельно или последовательно. Применение же удвоителя позволит без затруднений получить напряжение 550…600 В при токе нагрузки порядка 150 мА.
Этот режим оптимален для получения линейной характеристики для лампы ГУ50 при работе на SSB. Соединив обмотки накала последовательно (используемые в ТВ для питания накала ламп и кинескопа) и применив УН по схеме рис.3, можно получить источник отрицательного напряжения смещения для управляющих сеток ламп (порядка минус 55.65 В).
В связи с небольшим током потребления по управляющей сетке, в качестве конденсаторов такого УН можно применить неполярные конденсаторы 0,5 мкФ на 100.200 В.
Эти же обмотки можно использовать и для получения напряжения коммутации режима «прием-передача». При построении выходного каскада с заземленной сеткой управляющая сетка подключается к источнику отрицательного напряжения (УН 55.65 В), катод подключается через дроссель (015 мм, n=24, ПЭВ-1 00,64 мм) к -300 В, а на анод подается +300 В, напряжение возбуждения подается на катод через конденсатор .
Можно подключить управляющую сетку непосредственно к -300 В, катод подсоединяется к -300 В через две параллельно соединенных цепочки, каждая из которых состоит из стабилитрона Д815А и 2-ваттного резистора 3,9 Ом . Напряжение возбуждения в этом случае подается на катод через широкополосный трансформатор.
Если выходной каскад УМ выполнен по схеме с общим катодом, то на анод подается +600 В, а на экранную сетку +300 В с точки соединения С1, С2, С3, С4 (выход -300 В соединен с «общим» проводом RXTX), что позволяет избавиться от мощных гасящих резисторов в цепи экранной сетки, на которых бесполезно выделяется большая тепловая мощность. На управляющую сетку подается отрицательное смещение -55.65 В с упомянутого ранее УН.
Для уменьшения уровня пульсаций питающего напряжения в выпрямителе можно также использовать и штатные дроссели (L1, L2, рис.2) фильтра источника питания того же УЛТ типа ДР2ЛМ с индуктивностью первичной обмотки порядка 2 Гн. Намоточные данные СТ и ДР2ЛМ приведены в .
Принцип работы умножителя напряжения
Чтобы понять, как функционирует схема, лучше посмотреть работу так называемого универсального устройства. Здесь число каскадов точно не задано, а выходное электричество определяется формулой: n*Uin = Uout, где:
- n – количество присутствующих каскадов схемы;
- Uin – напряжение, подаваемое на вход устройства.
При начальном моменте времени, когда на схему приходит первая, допустим, положительная полуволна, диод входного каскада пропускает ее на свой конденсатор. Последний заряжается до амплитуды поступившего электричества. При второй отрицательной полуволне первый диод закрыт, а полупроводник второго каскада пускает ее к своему конденсатору, который также заряжается. Плюс к этому напряжение первого конденсатора, включенного последовательно со вторым, суммируется с последним и на выходе каскада получается уже удвоенное электричество.
На каждом последующем каскаде происходит то же самое – в этом принцип умножителя напряжения. И если просмотреть прогрессию до конца, то получается, что выходное электричество превосходит входное в энное количество раз. Но как и в трансформаторе, сила тока здесь будет уменьшаться при увеличении разности потенциалов – закон сохранения энергии также работает.
Управление температурным коэффициентом напряжения
Жёсткую связь между выходным напряжением простейшего умножителя Vбэ и его температурным коэффициентом можно разорвать несколькими способами.
Для уменьшения ТКН при достаточно больших k применяется последовательное включение двух простейших умножителей Vбэ. Суммарное напряжение такой цепи устанавливается равным необходимому напряжению смещению, но на теплоотвод выходного каскада устанавливается лишь один из транзисторов (Т1). Второй транзистор (Т2), размещённый на печатной плате, отслеживает температуру воздуха в корпусе и практически не влияет на режим работы выходных транзисторов.
Альтернативный способ уменьшения ТКН при больших k — замена резистора R2 на последовательное соединение резистора и термостабилизированного источника опорного напряжения (ИОН), например, бандгапа TL431 на ≈2,5 В. Абсолютная величина ТКН по-прежнему определяется делителем напряжения R1R2, но напряжение на выводах такого умножителя больше, чем напряжение простейшего умножителя Vбэ, на величину напряжения ИОН. В схемах с малым k величина вольтодобавки может быть уменьшена до требуемых значений в несколько сотен мВ с помощью отдельного делителя напряжения. Аналогичным образом можно и увеличить ТКН — для этого вольтодобавка включается в нижнее плечо делителя, между эмиттером транзистора и R1. Величина вольтодобавки не может превышать Uбэ (на практике используются напряжения 0…400 мВ), поэтому делитель на выходе ИОН обязателен.
В низковольтных умножителях с k=2…4 напряжение на входных зажимах умножителя (1,3…3,0 В) недостаточно для питания типичного интегрального ИОН на напряжение 2,5 В. В таких схемах ИОН запитывается через собственный отвод от шины питания, а ток ИОН стабилизируется отдельным источником тока или привязкой (англ. bootstrapping) к выходу мощного каскада.
Умножитель напряжения ⋆ diodov.net
При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.
Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.
Однако применяя умножитель напряжения можно повысить его до 1000 В и более.
Удвоитель напряжения
Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.
В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.
Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.
Теперь давайте рассмотрим конкретные примеры и схемные решения.
Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.
В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.
Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.
Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.
Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.
К тому же мультиметром возможно измерить лишь действующие значения переменных величин.
Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.
После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.
Умножитель напряжения многократный
Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.
Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.
В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.
К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.
По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.
Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.
Технические характеристики
На практике умножитель имеет ряд недостатков. Если в умножитель добавляется слишком много секций, напряжение в последних секциях будет ниже ожидаемого, в основном из-за ненулевого импеданса конденсаторов в нижних секциях. Практически невозможно питание умножителя непосредственно напряжением промышленной частоты, так как в этом случае требуются конденсаторы большой ёмкости, что сильно ухудшает массогабаритные показатели устройства. Пульсации выпрямленного тока также усиливаются, что в некоторых случаях неприемлемо. Обычно на вход напряжение подаётся с выхода высокочастотного высоковольтного трансформатора и повышается до нужной величины в умножителе.
Существуют умножители на напряжения от нескольких сотен вольт до нескольких миллионов вольт.
Принцип работы удвоителя
Принцип работы удвоителя построен на преобразовании напряжения. Для этого в устройстве имеется целая цепь конденсаторов. Они отличаются по полюсной проводимости и емкости. Диоды в данном случае крепятся на контакторах. При подаче напряжении на удвоитель включается в работу тиристор. Указанный элемент способен работать при определенных частотах.
В данном случае многое зависит от производителя модификации. У некоторых моделей применяется обкладка, которая выступает изолятором. Постоянный ток у моделей проходит через цепь конденсаторов. Выпрямление происходит на модуле, который является неотъемлемым элементом диода. При высоком выходном напряжении довольно часто возникают импульсные помехи. Также к недостаткам удвоителей можно отнести слабое усиление напряжения. Таких проблем нет у трансформаторов.
Уменьшение внутреннего сопротивления
Для применения в высококачественных усилителях мощности внутреннее сопротивление простейшего умножителя Vбэ недопустимо велико́. Неизбежные изменения тока, протекающего через такой умножитель, сдвигают напряжение на нём на десятки мВ; cдвиг рабочей точки выходного каскада, оптимизированного на минимум нелинейных искажений, на такую величину неизбежно увеличивает искажения. Простое и эффективное решение этой проблемы — включение в цепь коллектора T1 резистора R3, величина которого равна внутреннему сопротивлению умножителя. В первом приближении всё напряжение ошибки, пропорциональное току коллектора, падает на этом резисторе; выходное напряжение умножителя, снимаемое с коллектора и эмиттера Т1 (Vкэ), более не зависит от протекающего тока. Действительная ВАХ усовершенствованного умножителя Vбэ имеет нелинейный, но весьма близкий к линейному, характер. При оптимальном подборе R3 выходное напряжение в рабочей точке максимально, а с изменением тока оно незначительно, плавно спадает. R3 требует именно подбора опытным путём, так как внутреннее сопротивление реального транзистора может в два и более раз превосходить расчётное.
Другой способ снижения внутреннего сопротивления — применение комплементарной транзисторной двойки с локальной обратной связью. Датчиком температуры в ней служит транзистор Т1, ток которого ограничен величиной Vбэ*R3. При достижении этого порога открывается транзистор Т2, который шунтирует избыточный ток в обход Т1. Схема не требует оптимизации величины R3 (она зависит только от целевого значения тока через Т1), снижает внутреннее сопротивление умножителя на порядок во всём диапазоне рабочих токов и мало зависит от коэффициента усиления транзисторов по току
Её главные недостатки — нежелательное усложнение критически важного узла и вероятность самовозбуждения, свойственная всем схемам с многопетлевой ООС. Для предотвращения самовозбуждения обычно достаточно шунтировать выход умножителя конденсатором; для гарантированной устойчивости последовательно с эмиттером Т2 включают балластный резистор величиной около 50 Ом
При этом выходное сопротивление повышается, но не превышает 2 Ом.
На высоких частотах эффективность охватывающей транзистор обратной связи падает, полное сопротивление умножителя Vбэ возрастает. Например, в типичном умножителе на транзисторе 2N5511 (граничная частота усиления тока 100 МГц) частота среза, выше которой сопротивление умножителя принимает индуктивный характер, равна 2,3 МГц. Для нейтрализации этого явления достаточно зашунтировать умножитель Vбэ ёмкостью в 0,1 мкФ (на практике применяют ёмкости в диапазоне 0,1…10 мкФ).
Принцип работы[править]
Умножение в бинарной системеправить
Умножение в столбик
Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком.
Если множимое — разрядное, а множитель — разрядный, то для формирования произведения требуется вычислить частичных произведений и сложить их между собой.
Вычисление частичных произведенийправить
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами — конъюнкторами.
Каждое частичное произведение — это результат выполнения логических операции ( между текущим , где , разрядом множителя и всеми разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:
Суммирование частичных произведенийправить
На этом этапе происходит сложение всех частичных произведений .
Схемаправить
Схема матричного умножителя
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке.
Формирование частичных произведений осуществляется посредством логических элементов .
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата.
Разрядность результата — определяется разрядностью множителя — и множимого — :
.
Все конъюнкторы работают параллельно.
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
Время выполнения операции умножения определяется временем распространения переносов до выходного разряда .
Если внимательно посмотреть на схему матричного умножителя (англ. binary multiplier), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа и числа . В точках пересечения этих проводников находятся логические элементы . Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.