Темброблок для усилителя своими руками

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты:-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта сайт
).

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс — в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении — с синеватым.

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания. В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904. Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах). Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

QX5241

QX5241 — это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку «5241a» (см. фото).

В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

Вот некоторые ключевые характеристики LED-драйвера на QX5241:

  • максимальный выходной ток — 2.5 А;
  • КПД до 96%;
  • максимальная частота диммирования — 5 кГц;
  • максимальная рабочая частота преобразователя — 1 МГц;
  • точность стабилизации тока через светодиоды — 1%;
  • напряжение питания — 5.5 — 36 Вольт (нормально работает и при 38!);
  • выходной ток рассчитывается по формуле: R = 0.2 / I LED

Более подробно читайте в спецификации (на инглише).

Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше — то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

Сборка блока питания

Плата блока питания по конструкции также очень простая и не должна создавать трудностей при сборке. Здесь все элементы, кроме сетевого трансформатора и выключателя располагаются на односторонней плате размером 54,6 × 80 мм

Увеличение по клику

Аналогично сборке предварительно усилителя, также сначала следует установить низкопрофильные элементы: перемычки, резисторы, диоды и т.п. Для обеспечения эффективного отведения тепла от мощных (5 Вт) резисторов, их следует установить с зазором от поверхности платы в 2-3мм. (удобно подкладывать перед пайкой под элемент спичку)

Соблюдайте полярность при монтаже электролитических конденсаторов и микросхем стабилизаторов

Обратите внимание, что они сориентированы в противоположных направлениях

Микросхема стабилизатора REG3 монтируется горизонтально, а место контакта её с радиатором охлаждения следует смазать теплопроводящей пастой. Для крепежа радиатора следует использовать винт M3 × 10 мм с плоской головкой и шайбой. Не запаивайте выводы микросхемы пока не смонтируете и не отрегулируете положение радиатора охлаждения.

Увеличение по клику

Установите собранные платы в корпус с помощью стоек и винтов M3 × 6 мм. После этого можно приступить к соединению блоков предварительного усилителя проводами.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора R ON .

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Выход на наушники

Если вы установили схему переключения усилителя для наушников (RLY6, RLY7 и соответствующие элементы) и собрали подходящий усилитель, подключите выход (CON6) ко входу усилителя для наушников с помощью двухжильного экранированного кабеля. Кроме того, контакты переключателя гнезда для наушников должны быть подключены к разъёму CON7.

Лучше использовать разъём с изолированными контактами переключателя, тогда все, что вам нужно сделать это подключить нормально замкнутые контакты одного из каналов.

Какого бы типа разъём вы не применили, важно: если штекер наушников не подключен, тогда контакты разъёма CON7 должны быть замкнуты. Иначе сигнала на выходе предварительного усилителя не будет!

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме. Для питания НЧ полосных каналов (левый и правый каналы) — трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания. Для СЧ и ВЧ каналов — трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо — можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Принципиальная схема

Каждый из каналов предварительного усилителя состоит из истокового повторителя на полевом транзисторе V1 и активных регуляторов громкости и тембра, выполненных соответственно на транзисторах V2, VЗ и V4, V5.  Истоковый повторитель необходим при использовании усилителя с источниками сигнала, обладающими большим выходным сопротивлением.

Если же устройство используется в магнитофоне или проигрывателе, корректирующие усилители которых имеют, как правило, низкое выходное сопротивление, повторитель можно исключить.

В этом случае сигнал подают на конденсатор С2 (поменяв полярность его включения на обратную) через делитель, составленный из резисторов сопротивлением 8,2 кОм и 910 Ом.

Усилители активных регуляторов громкости и тембра одинаковы по схеме и отличаются друг от друга только номиналами некоторых элементов.

Соотношения между номиналами элементов С2, R6, С3, R8, R12, С4 активного регулятора громкости подобраны так, чтобы при данном выходном сопротивлении истокового повторителя (600… 1000 Ом) обеспечить наилучшую тонкомпенсацию во всем диапазоне регулирования. Требуемый при малой громкости подъем усиления на низших и высших частотах создается соответственно конденсаторами С4 и С3.

Емкость конденсатора С2 выбрана из условия отсутствия подъема АЧХ при максимальной громкости. Громкость регулируют переменным резистором R8, стереобаланс — переменным резистором R29.

Элементы регулятора тембра включены в цепь ООС, охватывающей усилитель на транзисторах V4, V5. На низших частотах тембр регулируют переменным резистором R20, на высших — резистором R22. При использовании регулятора тембра в других трактах следует учитывать, что выходное сопротивление предшествующего каскада должно быть не более 700 Ом.

Низковольтная проводка

Как только вы убедитесь, что источник питания работает правильно, отключите сетевой кабель и подключите выходы ± 15 В и 5 В ко входам питания предусилителя.

Обратите внимание, что для подключения потребуется три провода для источника +15-GND—15В и два провода для источника +5В-GND. Напомним, что для уменьшения уровня шумов земляные цепи (GND) этих двух источников не соединяются между собой!

Напомним, что для уменьшения уровня шумов земляные цепи (GND) этих двух источников не соединяются между собой!

Для уменьшения уровня помех и придания эстетичного внешнего вида скрутите провода между собой раздельно для питания +5В-GND и ± 15 В-GND.

Для заземления платы предварительного усилителя подключите соответствующий контакт на печатной плате к корпусу усилителя отдельным проводом.

Не подключайте к этой точке больше никаких цепей, кроме корпуса регулятора громкости (об этом ниже).

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Напряжение питания — 6-30 В.
  2. Выходной ток — 1,2 А.
  3. Допустимая погрешность при стабилизации тока — не более 5%.
  4. Защита от отключения нагрузки.
  5. Выводы для диммирования.
  6. КПД — 97%.

Обозначение выводов микросхемы:

  1. SW — подключение выходного коммутатора.
  2. GND — отрицательный вывод источников питания и сигнала.
  3. DIM — регулятор яркости.
  4. CSN — датчик входного тока.
  5. VIN — положительный вывод, соединяемый с источником питания.
Оцените статью:
Оставить комментарий