15 самых интригующих фактов об атомах
Содержание
Базовая модель атома и атомная теория
Все вещества состоят из частиц, называемых атомами. Атомы связываются друг с другом, образуя элементы, и содержат только один вид атома.
Атомы различных элементов образуют соединения, молекулы и объекты.
Атом — это строительный блок материи, который нельзя разбить на части с помощью каких-либо химических средств.
Ядерные реакции могут изменить атомы.
Три части атома — это протоны (положительно заряженные), нейтроны (нейтральный заряд) и электроны (отрицательно заряженные).
Протоны и нейтроны образуют атомное ядро.
Электроны притягиваются к протонам в ядре, но движутся так быстро, что падают к нему (орбите), а не прилипают к протонам.
Идентичность атома определяется его числом протонов. Это также называется его атомным номером.
Части Атома
Атомы состоят из трех частей:
Протоны: протоны являются основой атомов. В то время как атом может получать или терять нейтроны и электроны, его идентичность связана с числом протонов. Символом числа протонов является заглавная буква Z.
Нейтроны: число нейтронов в атоме обозначается буквой N. Атомная масса атома является суммой его протонов и нейтронов или Z + N. Сильная ядерная сила связывает протоны и нейтроны вместе, образуя ядро атом.
Электроны: электроны намного меньше протонов или нейтронов и вращаются вокруг них.
Основные характеристики атомов:
Атомы не могут быть разделены с помощью химических веществ. Они состоят из частей, которые включают протоны, нейтроны и электроны, но атом является основным химическим строительным материалом материи. Ядерные реакции, такие как радиоактивный распад и деление, могут разрушать атомы.
Каждый электрон имеет отрицательный электрический заряд.
Каждый протон имеет положительный электрический заряд. Заряд протона и электрона равен по величине, но противоположен по знаку. Электроны и протоны электрически притягиваются друг к другу. Как заряды (протоны и протоны, электроны и электроны) отталкиваются друг от друга.
Каждый нейтрон электрически нейтрален; иными словами, нейтроны не имеют заряда и не притягиваются электрически ни к электронам, ни к протонам.
Протоны и нейтроны имеют примерно одинаковые размеры и намного больше электронов. Масса протона по существу такая же, как у нейтрона.
Масса протона в 1840 (!) раз больше массы электрона.
Ядро атома содержит протоны и нейтроны. Ядро несет положительный электрический заряд.
Электроны движутся вне ядра; они организованы в оболочки, которые являются областью наиболее вероятного их местонахождения.
Простые модели показывают, что электроны вращаются вокруг ядра по почти круговой орбите, подобно планетам, вращающимся вокруг звезды, но реальное поведение намного сложнее.
Некоторые электронные оболочки напоминают сферы, но другие больше похожи на тупые колокольчики или другие формы.
Технически, электрон может быть найден в любом месте в пределах атома, но проводит большую часть своего времени в области, описываемой орбиталью.
Электроны также могут перемещаться между орбиталями.
Атомы очень маленькие. Средний размер атома составляет около 100 пикометров или одну десятитысячную часть метра.
Почти вся масса атома находится в его ядре; почти весь объем атома занят электронами.
Количество протонов (также известно как его атомный номер) определяет элемент.
Изменение количества нейтронов приводит к образованию изотопов. Изменение числа электронов приводит к образованию ионов. Изотопы и ионы атома с постоянным числом протонов — это вариации одного элемента.
Частицы внутри атома связаны друг с другом мощными силами.
В общем, электроны легче добавлять или удалять из атома, чем протон или нейтрон.
Химические реакции в основном включают атомы или группы атомов и взаимодействия между их электронами.
Открытие нейтрона.
Открытие изотопов не прояснило вопрос о строении ядра. К этому времени были известны лишь протоны – ядра водорода и электроны, а потому естественной была попытка объяснить существование изотопов различными комбинациями этих положительно и отрицательно заряженных частиц. Можно было бы думать, что ядра содержат А протонов, где А – массовое число, и А—Z электронов. При этом полный положительный заряд совпадает с атомным номером Z.
Такая простая картина однородного ядра поначалу не противоречила выводу о малых размерах ядра, вытекавшему из опытов Резерфорда. «Естественный радиус» электрона r = e2/mc2 (который получается, если приравнять электростатическую энергию e2/r заряда, распределенного по сферической оболочке, собственной энергии электрона mc2) составляет r = 2,82Ч10–15 м. Такой электрон достаточно мал, чтобы находиться внутри ядра радиусом 10–14 м, хотя поместить туда большое число частиц было бы затруднительно. В 1920 Резерфорд и другие ученые рассматривали возможность существования устойчивой комбинации из протона и электрона, воспроизводящей нейтральную частицу с массой, приблизительно равной массе протона. Однако из-за отсутствия электрического заряда такие частицы с трудом поддавались бы обнаружению. Вряд ли они могли бы и выбивать электроны из металлических поверхностей, как электромагнитные волны при фотоэффекте.
Лишь спустя десятилетие, после того как естественная радиоактивность была глубоко исследована, а радиоактивное излучение стали широко применять, чтобы вызывать искусственное превращение атомов, было надежно установлено существование новой составной части ядра. В 1930 В.Боте и Г.Беккер из Гисенского университета проводили облучение лития и бериллия альфа-частицами и с помощью счетчика Гейгера регистрировали возникающее при этом проникающее излучение. Поскольку на это излучение не оказывали влияния электрические и магнитные поля и оно обладало большой проникающей способностью, авторы пришли к выводу, что испускается жесткое гамма-излучение. В 1932 Ф.Жолио и И.Кюри повторили опыты с бериллием, пропуская такое проникающее излучение через парафиновый блок. Они обнаружили, что из парафина выходят протоны с необычно высокой энергией, и заключили, что, проходя через парафин, гамма-излучение в результате рассеяния порождает протоны. (В 1923 было установлено, что рентгеновские лучи рассеиваются на электронах, давая комптоновский эффект.)
Дж.Чедвик повторил эксперимент. Он также использовал парафин и с помощью ионизационной камеры (рис. 1), в которой собирался заряд, возникающий при выбивании электронов из атомов, измерял пробег протонов отдачи.
Чедвик использовал также газообразный азот (в камере Вильсона, где вдоль следа заряженной частицы происходит конденсация водяных капелек) для поглощения излучения и измерения пробега атомов отдачи азота. Применив к результатам обоих экспериментов законы сохранения энергии и импульса, он пришел к выводу, что обнаруженное нейтральное излучение – это не гамма-излучение, а поток частиц с массой, близкой к массе протона. Чедвик показал также, что известные источники гамма-излучения не выбивают протонов.
Тем самым было подтверждено существование новой частицы, которую теперь называют нейтроном. Расщепление металлического бериллия происходило следующим образом:
Альфа-частицы 42He (заряд 2, массовое число 4) сталкивались с ядрами бериллия (заряд 4, массовое число 9), в результате чего возникали углерод и нейтрон.
Открытие нейтрона явилось важным шагом вперед. Наблюдаемые характеристики ядер теперь можно было интерпретировать, рассматривая нейтроны и протоны как составные части ядер. На рис. 2 схематически показана структура нескольких легких ядер.
Нейтрон, как теперь известно, на 0,1% тяжелее протона. Свободные нейтроны (вне ядра) претерпевают радиоактивный распад, превращаясь в протон и электрон. Это напоминает о первоначальной гипотезе составной нейтральной частицы. Однако внутри стабильного ядра нейтроны связаны с протонами и самопроизвольно не распадаются.
Строение электронной оболочки
Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.
Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.
В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.
В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.
Тип орбитали | s | p | d | f | g |
Значение орбитального квантового числа l | 1 | 2 | 3 | 4 | |
Число атомных орбиталей данного типа 2l+1 | 1 | 3 | 5 | 7 | 9 |
Максимальное количество электронов на орбиталях данного типа | 2 | 6 | 10 | 14 | 18 |
Получаем сводную таблицу:
Номер уровня, n |
Подуро-вень |
Число
АО |
Максимальное количество электронов |
1 | 1s | 1 | 2 |
2 | 2s | 1 | 2 |
2p | 3 | 6 | |
3 |
3s | 1 | 2 |
3p | 3 | 6 | |
3d | 5 | 10 | |
4 |
4s | 1 | 2 |
4p | 3 | 6 | |
4d | 5 | 10 | |
4f | 7 |
14 |
Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.
Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).
Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.
Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.
Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так:
Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.
АО | 1s | 2s | 2p | 3s | 3p | 3d | 4s | 4p | 4d | 4f | 5s | 5p | 5d | 5f | 5g |
n | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 |
l | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | |||||
n + l | 1 | 2 | 3 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 5 | 6 | 7 | 8 | 9 |
Таким образом, энергетический ряд орбиталей выглядит так:
1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6d …
Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.
Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.
Например, энергетическая диаграмма для атома углерода:
Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.
Например, электронная формула углерода выглядит так: 1s22s22p2.
Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую электронную конфигурацию.
Например, электронную формулу азота можно записать так: 1s22s22p3 или так: 2s22p3.
1s2 =
1s22s22p6 =
1s22s22p63s23p6 = и так далее.
Строение атомного ядра.
Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.
Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.
Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.
Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.
Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.
Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10-13см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.
Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов – «радионуклиды».
Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида АХ).
Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96Sr, 96Y, 96Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.
Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234U, 235U, 236U, 238U.
Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36S, 37Cl, 38Ar, 39K, 40Ca принадлежат к ряду изотопов с 20 нейтронами.
Изотопы принято обозначать в виде ZХМ, где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3Н, 14С, 137Сs, 90Sr и т. д.
Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 – 15Р32, такое же массовое число имеет и один из изотопов серы – 16S32.
Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.
В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.
В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).
Открытие электронов
Первые указания на сложную структуру атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Для наблюдения этих лучей из стеклянной трубки, в которую впаяны два металлических электрода, выкачивают по возможности весь воздух и затем пропускают сквозь нее ток высокого напряжения. При таких условиях от катода трубки перпендикулярно к его поверхности распространяются «невидимые»катодные лучи, вызывающие яркое зеленоватое свечение стекла трубки в том месте, куда они падают.
Катодные лучи обладают способностью приводить в движение помещенные на их пути легкоподвижные тела и отклоняются от своего первоначального направления в магнитном (рис. 2) и электрическом поле (в последнем в сторону положительно заряженной пластинки). Действие катодных лучей обнаруживается только внутри трубки, так как стекло для них непроницаемо и они не выходят из трубки наружу.
Изучение свойств катодных лучей привело к заключению, что они представляют собой поток мельчайших частиц, заряженных отрицательным электричеством и летящих со скоростью, достигающей половины скорости света. Особыми приемами удалось определить массу катодных частиц и величину их заряда. Оказалось, что масса каждой частицы равняется 0,00055 кислородной единицы, что составляет всего 1/1840часть массы атома водорода, самого легкого из всех атомов. Заряд катодной частицы равняется 1,60·10-19 кулона, или 4,80·10-10 электростатических единиц. Особенно замечательно, что масса частиц и величина их заряда не зависят ни от природы газа, остающегося еще в катодной трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов, не могут быть превращены в электронейтральные частицы: электрический заряд составляет, так сказать, самую сущность их природы. Эти частицы получили название электронов.
Рис. 2. Отклонение катодных лучей в магнитном поле
По современным воззрениям, заряд электрона есть наименьший электрический заряд, наименьшее количество электричества, какое только может существовать. Электричество состоит из отдельных частиц — «атомов» электричества, и всякое заряженное тело содержит непременно целое число таких частиц.
В катодных трубках электроны отделяются от катода под влиянием электрического разряда. Однако они могут возникать и вне всякой связи с электрическим разрядом. Так, например, все металлы испускают электроны при накаливании; в пламени свечи или горелки также присутствуют электроны; многие вещества выбрасывают электроны при освещении ультрафиолетовыми или рентгеновыми лучами и т. д.
Выделение электронов самыми разнообразными веществами указывает на то, что эти частицы входят в состав всех атомов; следовательно, атомы являются сложными образованиями, построенными из более мелких структурных единиц.
Вы читаете, статья на тему Строение атома
Что такое атом?
В школьной программе сказано, что атом – это наименьшая частица любого химического элемента. Следовательно, он есть во всём, что окружает в мире
Не важно, идёт речь о неодушевлённом или одушевлённом объекте. Любой предмет на низших химических и физиологических слоях состоит из атомов
Другой вопрос, из чего состоит частица.
Размеры: атома, протона, кварка
Атомы – это элементы, входящие в состав молекулы. При этом они не самые маленькие во вселенной. Есть ещё кварки, о которых не принято рассказывать в школе и даже в высшем учебном заведении. Они меньше атомов, представляют собой химический элемент без внутренней структуры. По строению они значительно легче частей молекулы. Учёным удалось обнаружить 6 разновидностей кварков.
Интересный факт: кварки имеют необычные названия – верхний, нижний, странный, истинный, очарованный и прелестный. Частицы предпочитают образовываться из двух или трёх кварков. В первом случае их именуют мезонами, а во втором – барионами. При этом кварки никогда не появляются по одному.
Открытие изотопов.
Измерения масс «каналовых лучей», проведенные Дж.Томсоном, Ф.Астоном и другими исследователями с помощью более совершенных масс-спектрометров и с большей точностью, дали ключ к строению ядра, а также атома в целом. Например, измерение отношения заряда к массе показало, что заряд ядра водорода, по-видимому, представляет собой единичный положительный заряд, численно равный заряду электрона, а масса mp = 1837me, где me – масса электрона. Гелий мог давать ионы с двойным зарядом, но его масса в 4 раза превышала массу водорода. Таким образом, высказанная ранее В.Праутом гипотеза о том, что все атомы построены из атомов водорода, была серьезно поколеблена.
Сравнивая на своем масс-спектрографе массу атома неона с известными массами других элементов, Томсон в 1912 неожиданно обнаружил, что неону вместо одной соответствуют две параболы. Расчеты масс частиц показали, что одна из парабол отвечает частицам с массой 20, а другая – с массой 22. Это явилось первым свидетельством того, что атомы определенного химического элемента могут иметь различные массовые числа. Поскольку измеренное (среднее) массовое число оказалось равным 20,2, Томсон высказал предположение, что неон состоит из атомов двух типов, на 90% с массой 20 и на 10% с массой 22. Поскольку оба типа атомов в природе существуют в виде смеси и их нельзя разделить химическим путем, массовое число неона оказывается равным 20,2.
Наличие двух типов атомов неона наводило на мысль о том, что и другие элементы могут представлять собой смеси атомов. Последующие масс-спектрометрические измерения показали, что большинство природных элементов представляют собой смеси от двух до десяти различных сортов атомов. Атомы одного и того же элемента с различной массой называют изотопами. У некоторых элементов существует только один изотоп, что требовало теоретического объяснения, как и факт разной распространенности элементов, а также существование радиоактивности лишь у определенных веществ.
В связи с открытием изотопов возникла проблема стандартизации, поскольку химики ранее выбрали в качестве стандарта «кислород» (16,000000 атомных единиц массы), оказавшийся смесью четырех изотопов. В итоге было решено установить «физическую» шкалу масс, в которой наиболее распространенному изотопу кислорода приписывалось значение 16,000000 а.е.м. Однако в 1961 между химиками и физиками было достигнуто соглашение, согласно которому наиболее распространенному изотопу углерод-12 были приписаны 12,00000 а.е.м. Поскольку число атомов в 1 моле изотопа равно числу Авогадро N, получаем
Отметим, что в атомную единицу массы входит масса одного электрона, а масса самого легкого изотопа водорода почти на 1% больше 1 а.е.м.
Уровни ядра
См. также: Теория оболочечного строения ядра
В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике, могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро — система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным. Если передать ядру энергию, оно перейдёт в возбуждённое состояние.
Расположение энергетических уровней ядра в первом приближении:
- D=ae−bE∗{\displaystyle D=ae^{-b{\sqrt {E^{*}}}}}, где:
D{\displaystyle D} — среднее расстояние между уровнями,
E∗{\displaystyle E^{*}} — энергия возбуждения ядра,
a{\displaystyle a} и b{\displaystyle b} — коэффициенты, постоянные для данного ядра:
a{\displaystyle a} — среднее расстояние между первыми возбуждёнными уровнями (для лёгких ядер примерно 1 МэВ, для тяжёлых — 0,1 МэВ)
b{\displaystyle b} — константа, определяющая скорость сгущения уровней при увеличении энергии возбуждения (для лёгких ядер примерно 2 МэВ−1/2, для тяжёлых — 4 МэВ−1/2).
С ростом энергии возбуждения уровни сближаются быстрее у тяжёлых ядер, также плотность уровней зависит от чётности числа нейтронов в ядре. Для ядер с чётными (особенно магическими) числами нейтронов плотность уровней меньше, чем для ядер с нечётными, при равных энергиях возбуждения первый возбуждённый уровень в ядре с чётным числом нейтронов расположен выше, чем в ядре с нечётным.
Во всех возбуждённых состояниях ядро может находиться лишь конечное время, до тех пор, пока возбуждение не будет снято тем или иным путём. Состояния, энергия возбуждения которых меньше энергии связи частицы или группы частиц в данном ядре, называются связанными; в этом случае возбуждение может сниматься лишь гамма-излучением. Состояния с энергией возбуждения, превышающей энергию связи частиц, называются квазистационарными. В этом случае ядро может испустить частицу или гамма-квант.
Знать, что «из чего сделано»
Слитки, украшения, монеты из золота, серебра, куски серы из вулканических источников, металлические железо и медь были известны на протяжении тысячелетий. Ученые древности пытались объяснить строение. Демокрит создал атомистику, Аристотель стал «отцом-основателем» современного естествознания. Ученые развивали мысли о materia prima в виде пяти первичных элементов или стихий: воздуха, воды, земли, огня и эфира.
Вещество или субстанцию древние представляли как то, «из чего что-то сделано». Возникли идеи о существовании очень маленьких частиц — атомов. Этот термин в переводе с греческого означает «неделимый».