Солнечный водяной коллектор своими руками

Виды и различия солнечных коллекторов

На сегодняшний день распространение среди промышленно изготавливаемых солнечных коллекторов получили два вида систем:

  • плоские солнечные панели;
  • вакуумные (вакуумированные) трубчатые коллекторы.

Плоская солнечная панель

Является распространенным типом солнечного коллектора, используемого в современных системах гелиоэнергетики. Широкое распространение данный тип получил вследствие относительной дешевизны и простоты, как устройства, так и эксплуатации. Недостатком плоских солнечных коллекторов является значительное (до двух раз) понижение КПД в условиях отрицательных температур наружного воздуха.

Конструкция плоского солнечного коллектора.

Конструктивно представляет собой панель с площадью поглощающей поверхности 2-2,5 м2, выполненную из алюминиевых или стальных сплавов. Лицевая часть выполнена в виде листа специального гелиостекла, что обеспечивает максимальное поглощение энергии солнечного света и минимальные потери энергии с отраженными и рассеянными лучами. Непосредственно под гелиостеклом расположен поглотитель, выполняемый в виде плоской трубки из медных или алюминиевых сплавов, имеющих высокий коэффициент теплопередачи.

Трубка, как правило, имеет радиальное оребрение, что значительно повышает коэффициент теплопередачи поглотителя. На поглотитель наносится покрытие с высоким коэффициентом поглощения в спектрах теплового излучения, что повышает общий КПД коллектора. Под поглотителем располагается слой тепловой изоляции, уменьшающий тепловые потери системы в окружающую среду. Необходимая тепловая мощность солнечного коллектора достигается включением нескольких панелей в единую солнечную батарею или коллектор.

Вакуумный (вакууммированный) трубчатый коллектор

Дорогостоящий вид солнечного коллектора вследствие сложного изготовления и ряда преимуществ перед плоскими солнечными панелями. Конструктивно представляет собой ряд парных стеклянных труб, спаянных между собой, из пространства между которыми откачан воздух. Вакуум в пространстве между трубками является прекрасным тепловым изолятором и предотвращает тепловые потери в окружающую среду от теплоносителя. В меньшую трубу вводится медная, алюминиевая или стеклянная трубка поглотителя. Трубы верхней частью вводятся в распределитель, в котором циркулирует теплоноситель. Вакуумные (вакуумированные) трубчатые коллекторы по типу распределителя подразделяются на два типа: с плоской тепловой трубой и прямоточные.

Коллекторы с плоской трубой

Вакуумный трубчатый солнечный коллектор с плоской тепловой трубой — конструкция.

Представляют собой рекуперативный теплообменник, расположенный в распределителе. В этом случае теплопередача от нагретого теплоносителя вакуумной трубы к теплоносителю циркуляционного контура теплоснабжения здания происходит через стенку и теплоносители этих контуров не смешиваются. Преимущества перед прямоточными коллекторами состоят в сохранении высоких показателей работы при температуре окружающей среды до -45оС, возможности замены отдельной вакуумной трубки, вышедшей из строя, без разбора коллектора и прекращения его работы, а также в возможности регулирования угла установки каждой вакуумной трубки в пределах одного коллектора.

Прямоточные коллекторы

Прямоточный вакуумный трубчатый солнечный коллектор — конструкция.

Объединяют циркуляционный и обогревающийся контур. В распределителе проходят подающий и циркуляционный трубопроводы, к которым непосредственно присоединяются вакуумные трубки. Теплоноситель подается в распределитель по подающему трубопроводу, из которого попадает в вакуумную трубку, где проходит обогрев. Нагретый теплоноситель возвращается в обратный трубопровод и уходит непосредственно на нужды теплоснабжения. Преимущества прямоточных коллекторов перед вакуумными состоят в отсутствии промежуточной стенки между теплоносителями, что снижает тепловые потери и в возможности устанавливать коллектор на любых поверхностях под любыми углами, поскольку циркуляция теплоносителя в пределах всего коллектора будет осуществляться насосом.

Чертежи конструкций

Приступаем к работе

Прежде чем сооружать солнечный коллектор, необходимо произвести соответствующие расчеты и определить, как много энергии он должен производить. Но от самодельной установки ждать высокого КПД не стоит. Сориентировавшись, что его будет достаточно – можно приступать.

Работу можно поделить на несколько основных этапов:

  1. Изготовить короб
  2. Изготовить радиатор или теплообменник
  3. Изготовить аванкамеру и накопитель
  4. Собрать коллектор

Чтобы изготовить коробку под солнечный коллектор своими руками, следует заготовить обрезную доску толщиной 25-35 мм и в ширину 100-130 мм. Дно ее следует сделать текстолитовым, оснастив его ребрами. Оно также должно быть хорошо теплоизолированное при помощи пенопласта (но предпочтение отдают минеральной вате), накрытого оцинкованным листом.

Еще 4 эффективных способа альтернативного отопления дома

О которых вы можете узнать в нашей следующей статье

Подготовив короб, настает пора мастерить теплообменник. Следует придерживаться инструкции:

  1. Необходимо подготовить 15 тонкостенных металлических трубок длиной 160 см и две дюймовые трубы длиной 70 см
  2. В обоих утолщенных трубках сверлятся отверстия диаметра меньших трубок, в которые они будут устанавливаться. При этом нужно следить за тем, чтоб они были по одной стороне соосны, максимальный шаг между ними 4.5 см
  3. Следующий этап – все трубки нужно собрать в единую конструкцию и надежно сварить
  4. Теплообменник монтируется на лист оцинковки (ранее прикрепленный к коробу) и фиксируется при помощи стальных хомутов (можно сделать металлические зажимы)
  5. Днище короба рекомендуют покрасить в темный цвет (например, черный) – он будет лучше поглощать солнечное тепло, но чтобы снизить тепловые потери, внешние элементы красятся белым
  6. Завершить монтаж коллектора необходимо установкой покровного стекла около стенок, при этом не забыв о надежной герметизации стыков
  7. Между трубками и стеклом оставляется расстояние, равное 10-12 мм

Остается соорудить накопитель под солнечный коллектор. Его роль может исполнять герметичная емкость, объем которой варьируется около 150-400 л. Если найти одну такую бочку не удается, можно сварить между собой несколько небольших.

Как и коллектор, накопительный бак основательно изолируют от потерь тепла. Остается изготовить аванкамеру – небольшой сосуд объемом 35-40 л. Он должен оснащаться падающим воду устройством (шарнирным краном).

Остается самый ответственный и важный этап – собрать коллектор воедино. Сделать это можно таким образом:

  1. Вначале необходимо установить аванкамеру и накопитель. Необходимо следить, чтоб уровень жидкости в последнем был на 0.8 м ниже, чем в аванкамере. Так как воды в таких устройствах может собираться немало, необходимо продумать, каким образом они будут надежно перекрываться
  2. Коллектор размещается на крыше дома. Исходя из практики, рекомендуется делать это на южной стороне, наклонив установку под углом 35-40 градусов к горизонту
  3. Но нужно учитывать, что между накопителем и теплообменником расстояние не должно превышать 0.5-0.7 м, иначе потери будут слишком существенны
  4. В конце должна получиться следующая последовательность: аванкамера обязана располагаться выше накопителя, последний – выше коллектора

Наступает самый ответственный этап – необходимо соединить все составляющие воедино и подключить к готовой системе водопроводную сеть. Для этого потребуется посетить магазин сантехники и приобрести необходимые фитинги, переходники, сгоны и прочую запорную арматуру. Высоконапорные участки рекомендуют соединять трубой диаметром 0.5 дюйма, низконапорные – 1 дюйм.

Введение в эксплуатацию выполняется следующим образом:

  1. Установка заполняется водой посредством нижнего дренажного отверстия
  2. Подсоединяется аванкамера и регулируются уровни жидкости
  3. Необходимо пройтись вдоль системы и проверить, чтобы не было утечек
  4. Все готово к повседневной эксплуатации

Схема работы

Коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора, который преобразует энергию радиации в тепловую энергию и передаёт её теплоносителю. Накопители могут быть вакуумными, трубными и плоскими. В первых конструкция похожа на термос: одна труба вставлена в другую, а между ними имеется вакуум, создающий идеальную теплоизоляцию. Благодаря цилиндрической форме труб, солнечные лучи попадают на них перпендикулярно и передают максимум энергии.

Солнечный коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора

Теплоносителем в таких конструкциях является обыкновенная вода. Она может не только отапливать помещение, но и служить для бытовых нужд. При этом нет выделений углекислого газа в атмосферу, что весьма актуально в наши дни. К тому же не требуется никаких затрат на топливо, а эффективность коллектора составляет 80%. На большей части России в период с марта по октябрь в среднем в сутки солнцем вырабатывается 4−5 кВтч/м2, что позволяет небольшим устройством размером 2м2 нагревать ежедневно до 100 л воды.

Для всесезонного использования коллектор должен иметь обширную поверхность, два контура с антифризом и дополнительные теплообменники. Таким образом, благодаря грамотно использованной энергии можно получать бесплатное тепло 7 месяцев в году, независимо от того ясно на улице или нет.

Как посчитать необходимую мощность коллектора

При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.

Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.

Компании производители рекомендуют исходить из таких цифр:

  • обеспечение горячего водоснабжения не более 70%;
  • обеспечение отопительной системы не более 30%.

Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.

Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.

Пример расчета:

Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:

S = 1,6 * 0,058 = 0,0928м2

КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:

W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч

Миф первый: плоские коллекторы прочнее вакуумных

Качественные плоские коллекторы немецкого производства являются довольно прочными и легко выдерживают град и тому подобные внешние воздействия. Но при желании, конечно, разбить их можно. То же самое можно сказать и о качественных вакуумных коллекторах. На практике замена стеклянных трубок на установленных вакуумных коллекторов применяется довольно редко, поскольку качественные трубки являются очень прочными и рассчитаны на долгий срок службы

Обратите внимание на видео ниже, где показано испытание вакуумной трубки на прочность куском льда, имитирующем град. Это показательный пример

А вот такой же пример с использованием стального шарика.

Также следует помнить, что в случае повреждения плоского коллектора его обычно следует менять, что является дорогостоящей и сложной задачей. При повреждении нескольких стеклянных трубок вакуумного коллектора, он все равно продолжит работать, а трубки в последующем можно заменить. Обычно при установке вакуумных коллекторов предусматривается каким образом будет проводиться замена трубок в случае их повреждения и завершения обычного срока службы (15 лет).

Принцип работы солнечного коллектора

Если кратко описать принцип работы коллектора – он необходим для захвата солнечной тепловой энергии. В дальнейшем она концентрируется и используется человеком.

Коллекторная система состоит из следующих составляющих:

  • Тепловой аккумулятор (обычная емкость под жидкость)
  • Теплообменный контур
  • Непосредственно коллектор

Жидкий или газообразный теплоноситель циркулирует по коллектору. Полученная энергия нагревает его и, посредством смонтированного бака-аккумулятора, передает тепло воде.

Нагретая жидкость хранится в баке до того, покуда она не будет использована. Сфера ее применения очень широка – от обычных хозяйственных нужд до отопления дома. Чтобы вода быстро не остывала, необходимо качественно тепло изолировать емкость.

Циркуляцию воды в коллекторе делают одним из двух способов: естественным или принудительным способом. В баке-аккумуляторе может монтироваться дополнительный элемент, нагревающий жидкость, который будет включаться при достижении низких температур окружающей среды и поддерживать температуру воды, например, зимой, когда солнцестояние непродолжительное.

Классификация устройств

Солнечные коллекторы подразделяются на двухконтурные и одноконтурные. Первый тип более распространён. В устройстве с двумя контурами по одному из них циркулирует вода, по второму — теплоноситель. Такой коллектор используется круглогодично.

Что касается одноконтурного оборудования, оно пригодно к применению только в безморозный период, так как внутри теплоносителя находится вода, способная замёрзнуть и разрушить трубки.

Это полезно: принцип работы и строение солнечных батарей.

По принципу работы коллекторы также делятся на несколько групп:

  • воздушные;
  • плоские;
  • вакуумные;
  • концентраторы.

Существуют несколько видов моделей, например, воздушные

Воздушные модели

Особенность этих коллекторов — невысокая эффективность. Воздух плохо проводит тепло, хотя он и способен нагреваться. Главное преимущество — возможность круглогодичного использования. Поскольку воздух не замерзает, нет риска, что трубки будут повреждены. Конструктивно этот тип коллектора отличается надёжностью и простотой. Такое оборудование подходит для отопления разных типов помещений, включая:

  • жилые дома;
  • подвалы;
  • овощехранилища;
  • цеха;
  • гаражи;
  • склады.

Основной элемент коллектора — ребристая панель, выполняющая функции теплоприёмника. Обычно она изготовлена из стали, алюминия или меди. Внутри панель разделена на ячейки. Воздух циркулирует между рёбрами и подогревается, отдавая тепло в помещение. Охлаждённый теплоноситель перемещается обратно в основную часть коллектора.

Воздушный солнечный коллектор из пивных банок : последствия работы после зимы:

Плоский источник тепла

Основное достоинство плоского солнечного коллектора — простота конструкции. Оборудование довольно надёжно, но имеет сравнительно низкий коэффициент полезного действия. Устройство собрано по принципу сэндвича и включает в себя следующие элементы:

  • защитное стекло;
  • медные трубки, заполненные теплоносителем;
  • теплоизоляционный слой;
  • алюминиевую раму;
  • крепёж;
  • абсорбент.

В качестве поглощающей поверхности (абсорбента) выступает пластина. Её окрашивают в чёрный цвет, чтобы поглощение солнечных лучей было максимальным. Стекло применяется для создания парникового эффекта. Благодаря ему тепло не уходит, а нагревает абсорбент. Такую конструкцию несложно собрать самостоятельно, а служить она может более 10 лет.

Существует модель на вакууме, которая имеет свои особенности

Оборудование на вакуумных элементах

Коллекторы вакуумного типа имеют в своей основе запаянные трубки, наполненные теплоносителем, и теплосборник. Трубки выполнены из стекла, покрытого специальным напылением, позволяющим лучше аккумулировать тепло. Благодаря вакууму предотвращаются потери тепла. В процессе циркуляции жидкость из вакуумных трубок поступает сначала в теплосборник, а затем в накопительный бак с водой. Охлаждённый теплоноситель возвращается обратно в систему.

У вакуумного (вакуумированного) устройства более высокий коэффициент полезного действия, чем у плоского и воздушного. С помощью этого коллектора удобно нагревать воду. Конструкция хороша тем, что трубки можно добавлять и убирать, когда увеличивается или уменьшается потребность в горячей воде.

Мой воздушный коллектор-сборка перед экспуатацией:

Существует много вариантов вакуумных устройств, в том числе такие, где стеклянные трубки находятся одна в другой, а в наружной находится вода. Недостаток моделей этого типа — сложность изготовления. Создать вакуум в домашних условиях нереально. На предприятиях есть такая возможность, тем не менее процесс изготовления вакуумированных коллекторов обходится недёшево.

Стагнация системы

Поговорим чуть подробнее о проблемах, связанных с переизбытком генерируемого тепла. Итак, предположим, что вы установили достаточно мощный гелиоколлектор, способный полностью обеспечить теплом отопительную систему вашего дома. Но наступило лето, и потребность в отоплении отпала. Если у электрического котла можно отключить электропитание, у газового – перекрыть подачу топлива, то над солнцем мы не властны – «выключить» его, когда стало слишком жарко, нам не под силу.

Стагнация системы – одна из главных потенциальных проблем солнечных коллекторов. Если из контура коллектора забирается недостаточно тепла, происходит перегрев теплоносителя. В определенный момент последний может закипеть, что приведет к прекращению его циркуляции по контуру. Когда теплоноситель остынет и конденсируется, работа системы возобновится. Однако далеко не все виды теплоносителей спокойно переносят переход из жидкого состояния в газообразное и обратно. Некоторые в результате перегрева приобретают желеобразную консистенцию, что делает невозможной дальнейшую эксплуатацию контура.

Избежать стагнации поможет лишь стабильный отвод производимого коллектором тепла. Если расчет мощности оборудования сделан правильно, вероятность возникновения проблем практически нулевая.

Однако даже в этом случае не исключено возникновение форс-мажорных обстоятельств, поэтому следует заранее предусмотреть способы защиты от перегрева:

1. Установка резервной емкости для накопления горячей воды. Если вода в основном баке системы горячего водоснабжения достигла установленного максимума, а гелиоколлектор продолжает поставлять тепло, автоматически произойдет переключение, и вода начнет греться уже в резервной емкости. Созданный запас теплой воды можно будет использовать для бытовых нужд позже, в пасмурную погоду.

2. Подогрев воды в бассейне

У владельцев домов с бассейном (не важно, крытым или размещенным под открытым небом) имеется прекрасная возможность отводить излишки тепловой энергии. Объем бассейна несравнимо больше объема любого бытового накопителя, из чего следует, что вода в нем не нагреется так сильно, что уже не сможет поглощать тепло

3. Слив горячей воды. При отсутствии возможности тратить избыток тепла с пользой можно попросту сливать небольшими порциями нагретую воду из накопительного резервуара для ГВС в канализацию. Поступающая при этом в емкость холодная вода будет понижать температуру всего объема, что позволит продолжать отводить тепло от контура.

4. Внешний теплообменник с вентилятором. Если гелиоколлектор обладает большой производительностью, избыток тепла может быть тоже очень велик. В этом случае система оборудуется дополнительным контуром, заполненным хладагентом. Этот дополнительный контур сопряжен с системой посредством теплообменника, оснащенного вентилятором и монтируемого за пределами здания. При возникновении риска перегрева избыточное тепло поступает в дополнительный контур и через теплообменник «выбрасывается» в воздух.

5. Сброс тепла в грунт. Если помимо солнечного коллектора в доме имеется грунтовый тепловой насос, избыток тепла можно направить в скважину. При этом вы решаете сразу две задачи: с одной стороны, защищаете контур коллектора от перегрева, с другой – восстанавливаете истощенный за зиму запас тепла в грунте.

6. Изоляция гелиоколлектора от прямых солнечных лучей. Этот способ с технической точки зрения один из самых простых. Конечно, забираться на крышу и занавешивать коллектор вручную не стоит – это тяжело и небезопасно. Гораздо рациональнее установить дистанционно управляемый заслон, наподобие рольставень. Можно даже подключить блок управления заслоном к контроллеру – при опасном повышении температуры в контуре коллектор будет закрываться автоматически.

7. Слив теплоносителя. Этот способ можно считать кардинальным, но в то же время он довольно прост. При возникновении риска перегрева теплоноситель посредством насоса сливается в специальную емкость, интегрированную в контур системы. Когда условия вновь станут благоприятными, насос вернет теплоноситель в контур, и работа коллектора будет восстановлена.

Оцените статью:
Оставить комментарий
Adblock
detector