Что такое электромагнитная индукция?

Электродвижущая сила

Ток в цепи будет возникать при направленном движении заряженных частиц, под действием некоторых сторонних сил. Электродвижущая сила, величина численно равная работе сил по перемещению, единичного положительного заряда вдоль замкнутого контура, называется электродвижущей силой. 

При изменении магнитного потока в контуре возникает электрический ток, а следовательно, возникает электродвижущая сила, которая в этом случае называется ЭДС индукции. Для её обозначение используют прописную букву Е. Мы будем обозначать ЭДС индукции Ei.

Согласно закону Ома для замкнутой цепи, будет выполняться следующее равенство:

Ii = Ei/R.

Теперь сформулируем закон электромагнитной индукции. Он будет говорить об ЭДС индукции, так как сила тока, будет зависеть от свойств проводника, а ЭДС будет определяться только изменением магнитного потока, пронизывающего замкнутый контур.

Основной закон электричества

Без знания и понимания основного закона электричества — Закона Ома, невозможно дальнейшее изучение и понимание электронных схем и устройств. Безусловно, электрический ток, напряжение и сопротивление связаны между собой. А взаимосвязь между ними описывается законом Ома. Для понимания формулы закона Ома для участка цепи, ее можно представить в виде треугольника (смотри фото ниже).

Закон Ома — главный закон электричества


Главный электрический закон – закон Ома для участка цепи

Закон Ома: «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».


Сила тока в участке цепи прямо пропорциональна напряжению

На иллюстрации видно, что человечек «Вольт» (напряжение) толкает через проводник человечка «Ампера» (ток). При этом человечек «Ом» (сопротивление) стягивает проводник, мешая прохождению тока. Получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее проходить току («сила тока обратно пропорциональна сопротивлению»). При этом, чем сильнее напряжение, тем больше сила тока на участке.

ФизикаУчебник для 10-11 классов

§ 5.5. ЭДС индукции в движущихся проводниках

Если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она-то и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет «магнитное происхождение».

На многих электростанциях сравнительно небольпюй мощности именно сила Лоренца вызывает перемещение электронов в движущихся проводниках.

Вычислим ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле (рис. 5.10). Пусть сторона контура MN длиной I скользит с постоянной скоростью вдоль сторон NC и MD, оставаясь все время параллельной стороне CD. Вектор магнитной индукции однородного поля перпендикулярен проводнику MN и составляет угол α с направлением его скорости.

Рис. 5.10

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна (см. § 4.9):

Направлена эта сила вдоль проводника MN. Работа силы Лоренца при перемещении заряда вдоль проводника от М к N равна*:

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению положительного заряда q к этому заряду:

Эта формула справедлива для любого проводника длиной I, движущегося со скоростью в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна Ei и остается неизменной, если скорость движения постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции (4.3.3). Действительно, магнитный поток через контур MNCD равен:

где угол 90° — α есть угол между вектором и нормалью к плоскости контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени (t = 0) проводник MN находился на расстоянии NC от проводника CD (см. рис. 5.10), то при перемещении проводника площадь S изменяется со временем следующим образом:

За время Δt площадь контура меняется на ΔS = -lυΔt. Знак минус указывает на то, что она уменьшается. Изменение магнитного потока за это время равно ΔФ = -BlυΔt sin α.

Следовательно,

как это и было получено выше .

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору , то ЭДС индукции в контуре будет равна нулю, так как поток Ф через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы (5.5.1), действующие на электроны в направлениях от N к М и от С к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

ЭДС индукции в проводниках, движущихся в постоянном магнитном поле, возникает за счет действия на свободные заряды проводника силы Лоренца.

* Это неполная работа силы Лоренца. Кроме силы Лоренца (5.5.1) имеется составляющая силы Лоренца, направленная против скорости проводника V. Эта составляющая совершает отрицательную работу (см. § 4.9).

Открытие электромагнитной индукции

Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.  

Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки. 

Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.

Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток. 

Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

Чем больше будет это изменение, тем сильнее получится индукционный ток

Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки

А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

Что такое взаимная индукция? Взаимная индуктивность

Для разъяснения понятия взаимной индукции рассмотрим две катушки К1 и К2 расположенные близко друг от друга

Если по одной из катушек пропускать электрический ток i1, то вокруг данной катушки возникнет магнитное поле с потоком Φ1, часть магнитных силовых линий которого будет пересекать и вторую катушку, вокруг которой образуется магнитный поток Φ12. Таким образом, при изменении тока i1в первой катушке будет изменяться магнитный поток Φ1, а, следовательно, и магнитный поток Φ12, пересекающий вторую катушку, что непременно приведёт к изменению электрического тока во второй катушке и соответственно возникновению ЭДС.

Таким образом, возникновение ЭДС в контуре под действием изменяющегося тока в близкорасположенном соседней катушке, имеет название взаимной индукции.

Как было сказано выше, явление самоиндукции в количественной форме выражается индуктивностью L, аналогично и взаимная индукция определяется физической величиной называемой взаимной индуктивностью М (имеет размерность Генри – «Гн»). Данная величина определяется отношением потокосцепления во вторичной катушке Ψ12  к току в первичной катушке i1

Однако, определить взаимную индукцию можно и обратным способом, то есть пропуская ток i2 через вторичную катушку. В этом случае будет создаваться магнитный поток Φ2, часть которого Φ21 будет пронизывать первичную катушку, тогда взаимная индукция будет определяться следующим выражением

Так же как и в случае с самоиндукцией, ЭДС взаимной индукции во вторичной катушке будет зависеть от скорости изменения магнитного потока или потокосцепления

Взаимная индуктивность М имеет зависимость от индуктивности двух катушек и определяется согласно следующему выражению

где k – коэффициент связи, зависящий от степени индуктивной связи между катушками;

L1 – индуктивность первой катушки;

L2 – индуктивность второй катушки.

Коэффициент индуктивной связи k определяется следующим выражением

Из данного выражения видно, что коэффициент связи всегда будет меньше единицы, так как Φ12< Φ1 и Φ21< Φ2.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Как возникает ЭДС индукции и индукционный ток?

Как я говорил в предыдущих статьях вокруг проводника, по которому протекает электрический ток, возникает электромагнитное поле. Данное магнитное поле я рассмотрел здесь и здесь. Однако существует и обратное явление, которое называется электромагнитная индукция. Данное явление открыл английский физик М. Фарадей.

Для рассмотрения данного явления рассмотрим следующий рисунок

На данном рисунке показана рамка из проводника, помещённая в электрическое поле с индукцией В. Если данную рамку двигать вверх-вниз по направлению магнитных силовых линий или влево – вправо перпендикулярно силовым линиям, то магнитный поток Φ пронизывающий рамку буден практически постоянным. Если же вращать рамку вокруг оси О, то за некоторый промежуток времени ∆t  магнитный поток изменится на некоторую величину ∆Φ и в результате в рамке появится ЭДС индукции Еi и потечёт ток I, называемым индукционным током.

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Направление линий МП в зависимости от формы магнита

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

  • сердечник (магнитопровод);
  • обмотка.

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

Внешний вид простейшего ЭМ

Оцените статью:
Оставить комментарий