Энергия солнца. часть 1. системы преобразования солнечной энергии

Плюсы и минусы СЭС

Солнечные генераторы имеют массу достоинств. Главным из них является экологическая чистота для окружающей среды.

Плюсы солнечных электростанций:

  • Солнечная энергия постоянно возобновляется;
  • СЭС не причиняет вред окружающей среде;
  • Независимость от центральной подачи электричества;
  • Полная автономность системы;
  • Длительный срок эксплуатации;
  • Бесплатный энергетический ресурс.

Роль человека в получении электричества в данном случае сводится к нулю. Выработка энергии таким способом имеет и минусы. Покупка оборудования потребует серьезных вложений. Кроме этого необходимо приобрести аккумулятор, так как в ночное время СЭС не производит выработку электричества. Установка оборудования требует дополнительной площади. Она может осуществляться на земле, крыши дома, стене здания. К недостаткам можно отнести необходимость очищать отражающую поверхность от пыли и загрязнений, а также нагрев атмосферы над поверхностью оборудования. Мощность вырабатываемого тока напрямую зависит от погодных условий.

Если рационально подходить к вопросу установки солнечных батарей, необходимо учесть некоторые нюансы:

  • Проанализировать много ли солнечных дней в предполагаемом районе;
  • Уточнить возможность подключения к центральной сети;
  • Выяснить, как часто бывают перебои электричества;
  • Решить, приборы какой мощности будут использоваться в быту.

Достаточно много достоинств и недостатков у СЭС, однако природные ресурсы не вечны и станции на солнечной энергии смогут стать достойной заменой привычным ресурсам.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ. Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Так одной из крупнейших в нашей стране является Орская СЭС. Она состоит из 100 тыс. модулей, выдающих суммарную мощность 25 МВт. Выработанное электричество подаётся в Единую энергетическую систему России (ЕЭС).

Самой мощной сегодня является СЭС Перово, расположенная в Республике Крым. Она выдаёт более 105 МВт, что на момент открытия станции было мировым рекордом. СЭС Перово состоит из 440 000 фотоэлектрических модулей и занимает площадь 259 футбольных полей.

Вообще в Крыму солнечная энергетика неплохо развита – там более десятка солнечных электростанций мощностью от 20 МВт. Правда, вся полученная электроэнергия уходит сугубо на нужды полуострова.

К 2020 году в России планируется построить 4 крупных СЭС, мощность которых позволит увеличить долю солнечной энергии до 1% от всего энергобаланса страны.

А что думаете Вы о будущем солнечной энергетики?
Poll Options are limited because JavaScript is disabled in your browser.

Опрос из статьи: Солнечная энергетика

Таким образом, уже сегодня можно с уверенностью сказать, что солнечная энергетика способна в недалёкой перспективе выступить полноценной альтернативой традиционным способам получения электроэнергии. И даже в России эта отрасль хоть и медленно, но развивается.

Сетевая СЭС: как это работает

Сетевая солнечная электростанция не заменяет централизованное электроснабжение, а работает параллельно с ним. Когда поступление энергии от солнца достаточное, приоритет имеет солнечная электростанция; ночью или в плохую погоду снабжение дома электричеством берет на себя централизованный источник. Сетевые СЭС, в отличие от автономных, не комплектуются аккумуляторными батареями, но при необходимости такую СЭС можно оснастить и ими — это несложно, а получившаяся в результате конфигурация электростанции будет называться гибридной. 

Упрощенная схема работы сетевой солнечной электростанции

Перспективы использования

Основная статья: Солнечная энергетика

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000  (ЭДж) в год. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год. Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд.

«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1
Солнце 3 850 000
ветер 2 250
Потенциал биомассы ~200
Мировое потребление энергии2 539
Электроэнергия2 ~67
1 Энергию подано в эксаджоулях 1 ЭДж = 1018Дж = 278 ТВт/ч 2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтации, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши.

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтонику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии.

2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 ЭДж на год «(см

таблицу ниже)».

Годовой потенциал солнечной энергии по регионам (ЭДж)
Регион Северная Америка Латинская Америка и Карибы Западная Европа Центральная и Восточная Европа Страны бывшего Советского Союза Ближний Восток и Северная Африка Sub-Saharan Африка Pacific Asia Южная Азия Centrally planned Asia Pacific OECD
Минимум 181,1 112,6 25,1 4,5 199,3 412,4 371,9 41,0 38,8 115,5 72,6
Максимум 7 410 3 385 914 154 8 655 11 060 9 528 994 1 339 4 135 2 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Сколько нужно солнечных батарей для отопления дома

Казалось бы, все просто. На обогрев небольшого загородного коттеджа площадью 100 м² пойдет приблизительно 10 кВт = 10 000 Вт тепловой энергии. Это 100 панелей по 0.1 кВт или 34 больших модуля по 300 Вт. Столько батарей на крышу дома не поставишь, а о квартире и речи нет.

Сразу оговоримся, полученный результат – неправильный, поскольку не учитывает особенности эксплуатации солнечных энергетических систем:

  1. Фотоэлектрический модуль выдает максимальную мощность, когда лучи падают под углом 90° к плоскости батареи. Если не сделать трекер – следящий механизм, поворачивающий панель вслед за движением солнца, потеряем около 40% энергии. С другой стороны, подобное устройство тоже расходует электричество.
  2. Величина солнечного излучения на 1 м² – инсоляция – зависит от региона проживания, высоты над уровнем моря, затененности участка. Перечисленные факторы напрямую влияют на производительность батарей.
  3. С течением времени полупроводниковое покрытие модулей деградирует, в результате теряется примерно 1% электрической мощности ежегодно.
  4. Если фотоэлектрический слой перегревается солнцем, производительность панели тоже уменьшается.
  5. Малая толика энергии теряется в сопутствующем оборудовании – инверторах, контроллерах, АКБ. Это банальный нагрев деталей – трансформаторов, микросхем и прочих элементов.
  6. Когда рабочая поверхность загрязняется пылью либо засыпается снегом, возникают дополнительные потери.
  7. Заметьте, для отопления солнцем зимой вырабатываемого электричества должно хватать на обогрев дома и зарядку аккумуляторов на ночь.

Вывод. Универсального расчета электрической мощности батарей, подходящего ко всем странам и регионам, не существует. Но озвученную выше цифру 10 кВт нужно удвоить (как минимум), чтобы получить пристойный результат на практике. Понадобится от 200 стоваттных панелей, занимающих площадь свыше 140 м².

Есть надежный способ получить точные данные по инсоляции и рассчитать производительность солнечных батарей – обратиться в местную организацию, занимающуюся их монтажом. Либо самому изучать карту инсоляции района.

На карте видно, что центральные регионы РФ получают довольно мало радиации солнца – в среднем 3–3.5 кВт на метр квадратный за день

Предлагаем пойти другим путем – использовать опыт владельцев солнечных автономных электростанций, почитать их отзывы на тематических форумах. Отыщите там пользователей, проживающих в вашей местности, если хотите получить реальные цифры бесплатно. Приведем примеры:

  1. Автономная система солнечного электроснабжения, расположенная в Ленинградской области, РФ. Установлено 6 панелей по 0.22 кВт (всего 1.32 кВт), пиковая мощность в зимний безоблачный день – 1157 Вт. Тема обсуждается на известном русскоязычном форуме.
  2. г. Анапа, производительность батарей – 2.2 кВт, количество не указывается. За световой день электростанция генерирует порядка 9 кВт.
  3. г. Москва, мощность СЭС 2.64 кВт. За весь июнь установка выработала 304 кВт энергии.

Обратите внимание: нами учитывалась только солнечная энергия для отопления, подогрев воды и прочие хозяйственные нужды в расчет не принимались. Как рассчитать число батарей на практике, смотрите в видеосюжете:. Watch this video on YouTube

Watch this video on YouTube

Устройство

Главными составляющими частями всех моделей солнечных электростанций, являются:

  1. Панель — в зависимости от мощностных характеристик, численность различна.
  2. Инверторы — основная часть всех солнечных электростанций. Служит для преобразования постоянного тока в переменный.
  3. Аккумуляторные батареи — это специализированные устройства, предназначение которых выполняет функцию хранения накопившейся солнечной энергии. Данные составляющие, служат для постоянной выдачи электроэнергии.

Принцип работы СЭС:

  1. Процедура очень проста: луч солнечного света, воздействует на частицы кремния – а именно он является составляющим солнечной батареи.
  2. При воздействии солнечных лучей, частица кремния освобождает электрон, огромное количество выработанных электронов способствует получению электричества. При таких химических реакциях, одной батареи недостаточно для возникновения необходимого количества электрической энергии, в результате данного факта, принято производить монтаж несколькими блоками. Блочная система солнечной батареи устанавливается обычно на крыше дома, на заранее подготовленной специализированно оборудованной площадке, имеющей специальные опоры.
  3. После процедуры выработки, электрическая энергия поступает на специальный агрегат, именуемый «инвертором», который находится во внутреннем помещении. Инвертор, после преобразования электронов, вырабатывает ток, а далее собирает его в аккумуляторные батареи.

СЭС для дачи, а точнее, их фотоэлементы, необходимо устанавливать, используя определенную методику:

  1. Выставить поверхность батарейных блоков под прямым углом относительно падающих солнечных лучей. В данном случае увеличивается производительность СЭС.
  2. Отклонения от перпендикуляра (учитывая движение солнца) может искажаться не более 15°.
  3. В случае эксплуатации установки круглогодично – выставить угол +15° относительно широты.
  4. При эксплуатации СЭС только в летнее время года, необходимо отталкиваться от угла -15°.

https://www.youtube.com/watch?v=__SgTorxBJg

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.

Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Использование солнечной энергии в химическом производстве

Солнечная энергия может применяться в различных химических процессах. Например:

Израильский Weizmann Institute of Science в 2005 году испытал технологию получения неокисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.

Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).

Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.

Перспективы использования

Основная статья: Солнечная энергетика

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000  (ЭДж) в год. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год. Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд.

«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1
Солнце 3 850 000
ветер 2 250
Потенциал биомассы ~200
Мировое потребление энергии2 539
Электроэнергия2 ~67
1 Энергию подано в эксаджоулях 1 ЭДж = 1018Дж = 278 ТВт/ч 2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши.

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтаику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии.

2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 ЭДж на год «(см

таблицу ниже)».

Годовой потенциал солнечной энергии по регионам (ЭДж)
Регион Северная Америка Латинская Америка и Карибы Западная Европа Центральная и Восточная Европа Страны бывшего Советского Союза Ближний Восток и Северная Африка Sub-Saharan Африка Pacific Asia Южная Азия Centrally planned Asia Pacific OECD
Минимум 181,1 112,6 25,1 4,5 199,3 412,4 371,9 41,0 38,8 115,5 72,6
Максимум 7 410 3 385 914 154 8 655 11 060 9 528 994 1 339 4 135 2 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Экономные солнечные генераторы: принцип работы

Для труднодоступных районов с перебойным обеспечением электроэнергией солнечные генераторы становятся спасением комфортного проживания. С помощью него можно решить проблемы энергоресурсов и обеспечить автономное энергообеспечение. В основном бытовые генераторы рассчитаны на 220 В. Устройства оснащены дисплеем, который отображает сообщение о работе батарей. Устанавливаются приборы на участках с большим поступлением солнечных лучей: крыша дома, стены здания, открытая местность.

Такой прибор сможет обеспечить работу бытового оборудования: холодильника, стиральной машины, зарядки компьютерных систем, работы отопительных приборов, электроинструментов и циркулярных насосов. Бесперебойная работа гарантирована на 10 – 12 часов.

Достоинства системы заключаются:

  • В автономности;
  • Не зависимости от центрального снабжения;
  • Мобильности;
  • Бесшумной работе;
  • Экологической безопасности;
  • Длительном сроке эксплуатации;
  • Компактности;
  • Возможности работать на непроветриваемых участках.

Единственным минусом является стоимость устройства, которая в последствии окупает затраты на электроэнергию.

Оцените статью:
Оставить комментарий