Блок питания своими руками
Содержание
- 1 О проводах из комплекта
- 2 Как протравить плату
- 3 Примерное меню на 7 дней
- 4 Блок питания ATX-400W — принципиальная схема
- 5 Варианты БП для самостоятельного монтажа
- 6 Как изготовить выпрямитель
- 7 Источники питания
- 8 Лабораторный блок питания 1,3-30v 0-5A
- 9 СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С УПРАВЛЯЮЩИМ ДИФКАСКАДОМ.
- 10 Универсальный блок питания.
- 11 Стабилизированный адаптер из нестабилизированного
- 12 Изготовление печатной платы
- 13 Как переделать трансформатор в БП или зарядное устройство своими руками
- 14 Устройство блока питания компьютера. Фильтр ЭМП.
- 15 Схема
- 16 Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.
О проводах из комплекта
- провода трехконтактного разъема тонкие и выполнены проводом 26AWG – толще тут и не нужно. Цветная изоляция интуитивно понятна – красный это питание электроники модуля, черный это масса, желтый — измерительный провод;
- провода двухконтрактного разъема – это провода токоизмерительные и выполнены толстым проводом 18AWG.
При подключении и сравнении показаний с показаниями мультиметра, расхождения составили 0,2 Вольта. Производитель предусмотрел подстроечные сопротивления на плате для калибровки показаний напряжения и тока, что является большим плюсом. В некоторых экземплярах наблюдается отличные от нуля показания амперметра без нагрузки. Оказалось, что решить проблему можно сбросом показаний амперметра, как показано ниже:
Картинка из интернета, потому прошу простить за грамматические ошибки в надписях. В общем со схемотехникой закончили — переходим к изготовлению коробки…
Схемы блоков питания
|
|
|
Как протравить плату
Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.
Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа – плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.
Примерное меню на 7 дней
Примерное меню на неделю в таблице:
День недели | Меню |
Понедельник |
Завтрак: греча на воде (200 г), хлебец с кусочком сыра, напиток травяной с лимоном.
Второй завтрак: яблоко зеленое (1 шт), стакан теплой не газированной воды. Обед: винегрет (100 г), суп с индейкой овощной (200 мл), компот из сухофруктов без сахара (200 мл). Полдник: кефир (200 мл), хлебец. Ужин: салат огурцы и помидоры, рис с овощами (100 г), филе индейки отварное (100 г), чай травяной с медом. |
Вторник |
Завтрак: йогурт натуральный без добавок и красителей (100 г), яйцо отварное (2 шт), чай.
Второй завтрак: салат фруктовый (100 г), стакан воды. Обед: суп с грибами (200 мл), огурец нашинкованный (50 г), мясо кролика тушеное с овощами (150 г), морс ягодный. Полдник: творог (50 г), стакан не газированной воды. Ужин: овощной салат (100 г), рыба запеченная (100 г), стакан свежевыжатого апельсинового сока. |
Среда |
Завтрак: каша овсяная на воде (100 г), хлебец с маслом, напиток.
Второй завтрак: грейпфрут, вода без газа. Обед: суп-пюре с сухариками (150 мл), салат со свежей капустой (70 г), чай зеленый с медом. Полдник: ломтик зернового хлеба и творожный сыр, сок. Ужин: овощное рагу (100 г), нежирные сорта рыбы на пару (100 г), напиток с лимоном. |
Четверг |
Завтрак: белковый омлет на пару, ломтик хлеба с сыром, сок.
Второй завтрак: груша, стакан не газированной воды. Обед: салат со свежим яблоком и морковью (50 г), кабачок фаршированный куриной грудкой (150 г), компот из сухофруктов несладкий. Полдник: йогурт без красителей (100 г), вода простая без газа. Ужин: сырники в духовке со сметной (100 г), чай с медом и лимоном. |
Пятница |
Завтрак: овсянка на воде с ягодами, чай зеленый.
Второй завтрак: апельсин, вода простая. Обед: салат капустный (50 г), уха с кусочками рыбы нежирных сортов (200 мл), чай. Полдник: кефир 1% (200 мл) Ужин: запеканка из овощей (150 г), яблоко, напиток с лимоном. |
Суббота |
Завтрак: хлопья с молоком и кусочками фруктов, хлебец, чай без сахара.
Второй завтрак: зерновой хлеб с сыром, вода без газа. Обед: салат со стручковой фасолью (50 г), запеченная морковь с куриной грудкой (150 мл), морс клюквенный. Полдник: ряженка, хлебец. Ужин: греческий салат (200 г), хлебец, чай с медом и лимоном. |
Воскресенье |
Завтрак: фруктовый салат (150 г), чай с лимоном.
Второй завтрак: творог (100 г), стакан воды. Обед: салат с томатами, огурцами и кукурузой (50 г), греча отварная (100 г), котлета из мяса птицы (100 г), сок апельсиновый. Полдник: овощная запеканка (100 г), вода. Ужин: тушеное мясо (100 г), свежие овощи (100 г), чай без сахара с лимоном. |
Блок питания ATX-400W — принципиальная схема
Конденсаторы С1, С2 образуют фильтр низкочастотной сети.
Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.
Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2. В случае исправности элементов обвязки заменить U4. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи.
При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения. Структурная схема источника рис. Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Значительно реже происходит отказ вентилятора, но это также приводит к печальным последствиям: от перегрева выгорают дроссели L1, L 2.
Во вторичных обмотках блока питания компьютера, кроме диодных сборок на радиаторах задействованы дроссели. Принципиальные схемы блоков питания ATX. Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.
Этой величины достаточно для запирания транзистора Q6. Резистор R47 и конденсатор С29 — элементы частотной коррекции усилителя.
Распиновка основного коннектора БП
Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. На неинвертирующий вход усилителя ошибки 1 выв. При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2.
Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. Обзор схем источников питания Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь.
Как работает ATX
Варианты БП для самостоятельного монтажа
Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.
Простой БП 0-30 В
Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.
Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.
Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.
Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.
В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.
Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.
Вольтметр можно использовать цифровой.
Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.
Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.
Мощный импульсный БП
Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.
Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:
-
Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
-
Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
-
Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.
Для размещения элементом схемы изготавливают печатную плату.
Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.
На Ардуино
Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.
«Умный» блок питания представлен на схеме.
Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.
Печатную плату можно сделать по образцу.
Внешний вид устройства и внутреннее расположение компонентов представлено на фото.
Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.
Как изготовить выпрямитель
Устройство, работающее на полупроводниковых диодах, называется выпрямителем, который является одним из важных элементов схемы блока питания. С помощью выпрямителя преобразовываются значения переменного тока, приближают к его постоянным показателям.
Не представляет никакого труда собрать своими руками блок питания на 12 вольт. Прежде всего следует усвоить, что конденсатор имеет два выхода: один из них положительный, другой отрицательный.
Как же понять, где находится какой? Если диод имеет положительное значение, то на нём есть специальная полоска, если нет полоски, то значит, диод имеет отрицательное значение. Диодокомпоненты соединяются последовательно:
Подобным образом проходит соединение 2-х других диодов (приспособление с минусом необходимо подключить к диоду с положительным значением). Соединение парных конструкций между собой, при этом необходимо попарно подсоединить диоды (отрицательный с отрицательным показателем, а положительный с положительным).
Важно проследить, чтобы подключение было правильным, иначе это приведёт к проблемам в работе механизма.
После создания диодного мостика с 4 соединительными точками:
двумя с плюс-минус схемой;
одной плюс-плюсовой;
одной минус-минусовой – можно приступать к сборке механизма
Важно при этом проверить качество контакта между диодными системами.
Источники питания
Лабораторный блок питания 1,3-30v 0-5A
Лабораторный блок питания 1,3-30v 0-5A
Основа схемы позаимствована мной из какой-то книги по схемотехнике. Очень удачная схема лабораторного блока питания. Пользуюсь этим блоком питания более трех лет, и все это время он безотказно работает. Не боится перегрузок и КЗ. Особенно удобно для проверки и отладки различных устройств. С его помощью я заряжаю аккумуляторы до15А/Ч.
Основу БП составляет стабилизатор LM317 (аналог к142ЕН12А). Он работает с внешним делителем напряжения в измерительном элементе, что позволяет регулировать выходное напряжение в очень широких пределах — от 1,3 до 37 В. Регулирующий элемент стабилизатора включен в плюсовой провод питания.
Выходной ток (ток нагрузки) — до 1 А. В паре с мощным транзистором стабилизатор позволяет отдавать значительно больший ток.
Для защиты БП и стабилизации выходного тока служит м/с LM301A. Питание у нее двух полярное +/- 22v. Контроль выходного тока ведется на резисторе R5. Регулировка ограничения выходного тока производится резисторами Р1 и Р2 (номиналы могут отличаться в зависимости от R5). В случае превышения потребляемого тока (перегрузки) на выходе LM301A появляется отрицательное напряжение, которое через D1 и LED1 уменьшает выходное напряжение БП, при этом загорается LED1.
Подробнее: Лабораторный блок питания 1,3-30v 0-5A
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С УПРАВЛЯЮЩИМ ДИФКАСКАДОМ
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С УПРАВЛЯЮЩИМ ДИФКАСКАДОМ.
Отличительной особенностью данного регулятора является его способность регулировать напрядение, когда величина входного и выходного напряжения почти равны. ( Большинство трёх ножечных регуляторов напряжения требуют разницы между входным и выходным напряжением около 3-х вольт для нормальной работы).Чтобы обслуживать ситуации, где два напряжения почти равны, необходимо использовать дискретные компоненты. Транзистор BD140 надо установить на радиатор, мощность рассеиваемая на транзисторе порядка 5-6 Ватт. Уровень выходного напряжения определяется по формуле
Uo={(R4+R5)/R5}*Uzener.
Универсальный блок питания
Универсальный блок питания.
Применение микросхемы КР142ЕН12А (Б) и унифицированного трансформатора ТПП255-220-50 позволяет изготовить простой и надежный источник питания для различных бытовых устройств.
Выходное напряжение источника может плавно регулироваться в пределах от 2 до 12 В. Максимальный ток нагрузки 1 А, при этом амплитуда пульсации выходного напряжения не превышает 2 мВ.
Подробнее: Универсальный блок питания
Стабилизированный адаптер из нестабилизированного
Стабилизированный адаптер из нестабилизированного
В магазинах, киосках подземных переходов, на радиорынках можно купить так называемые адаптеры, оформленные в виде сетевой вилки. Большие пульсации выходного напряжения и его зависимость от тока нагрузки затрудняют питание от них какой-либо радиоэлектронной аппаратуры. Как стабилизировать выходное напряжение таких адаптеров и рассказывается в данной статье.
Для фиксирования «круглых» значений выходного напряжения проще всего использовать микросхемы КР142ЕН5 и КР142ЕН8 с соответствующими буквенными индексами , устанавливая их на теплоотводе в корпус адаптера и дополняя выходным конденсатором емкостью не менее 10 мкФ. Если же необходимо «нестандартное» напряжение, следует применить микросхему КР142ЕН12А .
На рис.1 приведена схема зарядно-питающего устройства для портативного радиоприемника, в котором установлены четыре аккумулятора ЦНК-0,45. Конденсатор C1 устраняет высокочастотные помехи, возникающие в момент закрывания диодов выпрямительного моста. Выходное напряжение 5.6В устанавливают подстроечным резистором R3, а максимальный ток зарядки (примерно 150 мА) — подборкой резистора R1 при подключенной разряженной аккумуляторной батарее. Блок удобен тем, что зарядка аккумуляторов происходит быстро (4…6 ч), и перезарядить их невозможно .
Подробнее: Стабилизированный адаптер из нестабилизированного
Изготовление печатной платы
Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в резиновых перчатках, чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок печатной платы.
Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги перманентным маркером. Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.
Как переделать трансформатор в БП или зарядное устройство своими руками
Использовать обычный трансформатор в качестве блока питания нельзя, так как на его выходе получается переменное напряжение высоких частот. Кроме того, большинство подобных приборов не может функционировать без минимальных нагрузок, и им нужна доработка. Ниже рассказано, как сделать зарядное устройство из электронного трансформатора своими руками. При этом его не нужно разбирать, достаточно подключить к нему небольшую плату.
В основе платы лежит диод Шоттки, а также фильтрующий конденсатор. Также для запуска блока питания необходимо подключать к его выходу лампочку. Подбор диода выполняется по имеющимся параметрам выходного напряжения и максимального тока.
Важно! Максимальное обратное напряжение диода должно быть в несколько раз выше, чем напряжение выхода электрического трансформатора. Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток
При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор
Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток. При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор.
Модернизация трансформаторного устройства
Устройство блока питания компьютера. Фильтр ЭМП.
Устройство блока питания компьютера включает в себя фильтр ЭМП — это входной фильтр блока питания подавляет два типа электромагнитных помех: синфазных (common-mode) и дифференциальных (differential-mode). Для первого типа характерно течение тока в одном направлении, а во втором случае ток течет в разных направлениях.
Дифференциальные помехи подавляются с помощью включенного параллельно нагрузке конденсатора СХ, представляющий собой пленочный конденсатор. Иногда на провода вешают дроссель, выполняющий ту же функцию.
Устройство блока питания также в себя включает конденсаторы CY, которые образуют фильтр синфазных помех. Они соединяют линии питания в общей точке с землей и так называемым синфазным дросселем (LF1 на схеме), в обмотках которого ток течет в одном направлении, тем самым создавая сопротивление для таких помех.
Дешевые модели блоков питания оснащают минимальным набором деталей фильтра, а дорогие имеют повторяющиеся звенья. В прошлом фильтр ЭМП и вовсе не входил в устройство блока питания. Даже сейчас можно встретить дешевый блок питания без фильтра, но такие курьезные случаи за годы значительно уменьшились. Являясь мощным источником помех, такой блок питания будет негативно влиять на включенную в бытовую сеть технику.
Устройство блока питания хорошего качества включает в себя детали, защищающие владельца или сам блок питания от повреждений. Как правило, используется плавкий предохранитель, защищающий от короткого замыкания (F1). При срабатывании предохранителя, блок питания перестанет быть защищаемым объектом. В случае короткого замыкания пробивает ключевые транзисторы, поэтому необходимо предотвратить возгорание электропроводки. Сгоревший предохранитель будет уже бессмысленно менять заменять.
Для защиты от кратковременных скачков напряжения используется варистор (MOV – Metal Oxide Varistor). К сожалению, устройство блока питания не включает в себя защиту от длительного повышения напряжения, поэтому используют внешние стабилизаторы, оснащенные трансформатором внутри.
Конденсатор в цепи PFC после выпрямителя способен сохранять существенный заряд в случае отключения от питания. Для безопасности устанавливается разряжающий резистор большого номинала. Иногда в устройство блока питания интегрируется управляющая схема, не дающая заряду утекать в процессе работы устройства.
Схема
Импульсный БП состоит из следующих функциональных блоков:
- фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
- выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
- инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
- импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
- выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.
Дроссель переменного тока
Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».
Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.
Существует два способа генерации высокочастотного переменного тока:
- однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
-
двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
- двухполупериодная. Самый простой вариант;
- двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
- прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).
2-тактные БП отличаются схемой силового каскада, есть три модификации:
- полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
- мостовая: более экономична, но сложна в наладке;
- пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.
Стабилизации выходного напряжения добиваются следующими способами:
- применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
- применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.
Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.
При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.
Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.
На сегодняшний день импульсные блоки питания используются повсеместно, и они активно вытесняют с рынка менее удобные линейные агрегаты. Теме не менее, только в работе можно оценить сильные и слабые стороны импульсных и трансформаторных блоков питания.
К достоинствам импульсных агрегатов нужно отнести:
• Высокий коэффициент стабилизации;
• Высокий коэффициент полезного действия;
• Более широкий диапазон входных напряжений;
• Более высокая мощность по сравнению с линейными устройствами.
• Отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
• Небольшие габариты и достойная транспортабельность;
• Доступная цена.
К явным недостаткам импульсных источников питания стоит отнести:
• Наличие импульсных помех;
• Сложность схем, что негативно сказывается на надежности;
• Ремонт далеко не всегда удается произвести своими руками.
Трансформаторные блоки питания также имеют ряд плюсов, среди которых:
• Простота и надежность конструкции;
• Высокая ремонтопригодность и дешевизна запчастей;
• Отсутствие радиопомех;
Как вы понимаете, у трансформаторных блоков питания есть и недостатки, среди которых:
• Большой вес и габариты, что часто делает транспортировку очень неудобной;
• Обратная зависимость между КПД и стабильностью выходного напряжения;
• Металлоемкость конструкции.
Лабораторные блоки питания на сегодняшний день представлены огромным ассортиментом агрегатов. Спросом пользуются и импульсные, и трансформаторные блоки. Удачный выбор оборудования напрямую зависит от того, какие цели вы преследуете, приобретая блок питания
Если вы хотите всегда иметь под рукой надежный агрегат с отсутствием радиопомех, который редко ломается и легко поддается ремонту, тогда стоит обратить внимание на трансформаторные блоки питания. Если же для вас важна мощность и коэффициент полезного действия, тогда вам стоит подробнее изучить импульсные устройства.
Наиболее мощные лабораторный блоки питания представлены импульсными моделями:
Лабораторный блок питания (источник питания) MAISHENG MP3060D (30В, 60А) | 1800 Вт |
Лабораторный блок питания (источник питания) MAISHENG MP6030D (60В, 30А) | 1800 Вт |
Лабораторный блок питания (источник питания) MAISHENG MP5050D (50В, 50А) | 2500 Вт |
Лабораторный блок питания (источник питания) MAISHENG MP5060D (50В, 60А) | 3000 Вт |
Лабораторный блок питания MAISHENG MP40010D (400 В, 10 А) | 4000 Вт |
Лабораторный блок питания MAISHENG MP15030D (150 В, 30 А) | 4500 Вт |
Лабораторный источник питания MAISHENG MP30150D (30 В, 150 А) | 4500 Вт |
Лабораторный источник питания MAISHENG MP6080D (60 В, 80 А) | 4800 Вт |
Регулируемый источник питания MAISHENG MP50100D (50 В, 100 А) | 5000 Вт |