Устройство регулятора мощности своими руками

Назначение реле-регулятора напряжения на ВАЗ 2106

Как известно, система электроснабжения ВАЗ 2106 состоит из двух важнейших элементов: аккумулятора и генератора переменного тока. В генератор вмонтирован диодный мост, который автомобилисты по старинке называют выпрямительным блоком. Его задача — преобразовывать переменный ток в постоянный. А для того чтобы напряжение этого тока было стабильным, не зависело от скорости вращения генератора и сильно не «плавало», применяется устройство, называемое реле-регулятором напряжения генератора.

Внутренний регулятор напряжения ВАЗ 2106 отличается надёжностью и компактностью

Этот прибор обеспечивает постоянное напряжение во всей бортовой сети ВАЗ 2106. Если реле-регулятора не будет, напряжение будет скачкообразно отклоняться от среднего значения в 12 вольт, причём «плавать» оно может в очень широком диапазоне — от 9 до 32 вольт. А поскольку все потребители энергии на борту ВАЗ 2106 рассчитаны на работу под напряжением в 12 вольт, то без должного регулирования питающего напряжения они просто перегорят.

Конструкция реле-регулятора

На самых первых ВАЗ 2106 устанавливались контактные регуляторы. Увидеть такое устройство сегодня практически невозможно, поскольку оно безнадёжно устарело, а ему на смену пришёл регулятор электронный. Но для знакомства с этим устройством нам придётся рассмотреть именно контактный внешний регулятор, так как на его примере конструкция раскрывается наиболее полно.

Первые внешние регуляторы ВАЗ 2106 были полупроводниковыми и выполнялись на единой плате

Итак, основным элементом такого регулятора является обмотка из латунной проволоки (примерно 1200 витков) с медным сердечником внутри. Сопротивление у этой обмотки постоянное, и составляет 16 Ом. Кроме того, в конструкции регулятора имеется система вольфрамовых контактов, регулировочная пластинка и магнитный шунт. А ещё есть система резисторов, способ соединения которых может меняться в зависимости от требуемого напряжения. Наибольшее сопротивление, которое могут выдать эти резисторы, составляет 75 Ом. Вся эта система находится в прямоугольном корпусе из текстолита с выведенными наружу контактными площадками для подключения проводки.

Принцип работы реле-регулятора

Когда водитель запускает мотор ВАЗ 2106, вращаться начинает не только коленвал в двигателе, но и ротор в генераторе. Если скорость вращения ротора и коленвала не превышает отметку в 2 тыс. оборотов в минуту, то напряжение на выходах генератора не превышает 13 вольт. Регулятор при таком напряжении не включается, а ток идёт прямо на обмотку возбуждения. Но если скорость вращения коленвала и ротора возрастает, регулятор автоматически включается.

Реле-регулятор подключается к щёткам генератора и к замку зажигания

Обмотка, которая подключена к щёткам генератора, мгновенно реагирует на повышение оборотов коленвала и намагничивается. Сердечник, находящийся в ней, втягивается внутрь, после чего происходит размыкание контактов на одних внутренних резисторах, и замыкание контактов на других. К примеру, когда двигатель работает на малых оборотах, в регуляторе задействован лишь один резистор. При выходе двигателя на максимальные обороты включается уже три резистора, а напряжение на обмотке возбуждения резко падает.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.

Транзистор.  Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты

2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с  правым у резистора. Их необходимо припаять друг к другу.

Первый провод  необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.

Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.

Как проверить регулятор напряжения генератора мультиметром

Для того чтобы обеспечить нормальную работу лампочек, стеклоподъемников, стеклоочистителей и другого электрооборудования, а также зарядку аккумулятора, нужно поддерживать значение постоянного тока на уровне 13,5-14,5 вольт. Если этот показатель будет меньше, то не зарядится батарея, а если он превысит этот уровень – бортовые электроприборы выйдут из строя. Высокое напряжение наносит определенный вред и аккумулятору, сокращая срок эксплуатации из-за перезарядки.

Поэтому для преобразования тока, вырабатываемого генератором, существует специальное устройство – реле-регулятор напряжения. С его помощью бортовая сеть обеспечивается током, у которого поддерживаются требуемые параметры, независимо от оборотов коленчатого вала. Нередко возникают ситуации, когда возникает необходимость проверить напряжение генератора мультиметром.

Современные реле являются электронными, а их конструкция – неразборная. В случае выхода их из строя, они не подлежать регулировкам или ремонту, а требуют полной замены. Это считается единственным недостатком этих устройств, поскольку в остальном реле имеют массу достоинств: компактность, долговечность, высокая точность параметров тока.

Когда же регулятор напряжения можно считать неисправным?

  1. Фары меняют яркость свечения, в зависимости от оборотов двигателя.
  2. Наблюдается недостаточный заряд аккумулятора или, наоборот, его перезарядка, сопровождающаяся выкипанием электролита.
  3. В салоне автомобиля может ощущаться горелый запах. Поломка регулятора может произойти из-за попадания влаги, различных механических повреждений, короткого замыкания и других нестандартных кратковременных электрических воздействий.
  4. Иногда регулятор бывает изначально некачественным, если это сомнительная продукция от неизвестных производителей.

Существуют разные методы, как проверить реле-регулятор генератора мультиметром и установить его работоспособность. Наиболее простым считается проверка мультиметром, без демонтажа устройства. С этой целью выполняется измерение напряжения, поступающего в аккумулятор для его зарядки. Для такой проверки потребуется помощник, регулирующий обороты двигателя педалью акселератора.

Процедура проверки проходит в несколько этапов:

  • Двигатель автомобиля запускается и прогревается в течение 5-ти минут.
  • Открыть капот во время работы двигателя и соединить контакты мультиметра с клеммами батареи. Подключение нужно выполнять с соблюдением полярности, а переключатель выставляется на отметку 20 В.
  • Оценка зарядного напряжения, поступающего от генератора, выполняется при определенных условиях. Необходимо проверить сколько выдает генератор мультиметром. Ближний свет должен быть включен, а все остальные потребители – выключены. Коленчатый вал вращается со скоростью от 1,5 до 2,5 тыс. об/мин. Если напряжение составляет более 14,8 вольт, в этом случае регулятор считается неисправным и подлежит замене. При напряжении ниже 13,5 В причиной неисправности может быть не только реле. Неисправность может заключаться в проводке или самом генераторе.
  • Более точные результаты получаются путем оценки интенсивности тока, поступающего при нагрузке. Для этого потребуется включение дальнего света, вентилятора печки, стеклоочистителя и других потребителей. В такой ситуации величина зарядного тока не должна быть ниже отметки 13,5 вольт. Если показатель все-таки меньше этого значения, то при включении всего электрооборудования, аккумулятор не будет получать нормальную зарядку.

Более полноценная проверка выполняется на снятом реле-регуляторе. Обычно электронное устройство стоит поверх генератора, закрытое пластиковой крышкой. В некоторых случаях регулятор может образовывать единый блок со щетками. Для проверки кроме мультиметра нужно приготовить контрольную лампу на 12 В, мощностью не выше 3 ватт и регулируемый источник тока. Эти методы подходят и для того, чтобы проверить интегралку генератора мультиметром, то есть интегральный регулятор напряжения.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Элементы платы

Линейный регулятор напряжения

Сердце модуля линейный стабилизатор MC33269. Регулятор принимает на входное напряжение и преобразует его значение в 3,3 вольта. Остальная мощность рассеивается в виде тепла. В качестве охлаждения — выступает плата модуля.

Входное и выходное напряжение

На модуле выведен двойной клеммник для подключения входного питания и нагрузки:

  • контакт (Vin) — пин входного напряжения. Подключите к плюсовому контакту источника питания. Диапазон входного напряжения от 4,4 до 20 вольт.
  • двойной контакт (GND) — общая земля. Подключите к минусовому контакту источника питания и земле нагрузки.
  • контакт (Vout) — пин выходного напряжения со значением 3,3 вольта. Подключите к питанию нагрузки.

Джамперы выбора питания

Модуль с регулятором питания позволяет дублировать входное и выходное напряжение на Troyka-контактах путём установкой джаммеров:

  • — на линии будет присутствовать входное напряжение с клеммника .
  • — на линии будет выходное напряжение регулятора с клеммника .

Установка джампера будет полезна при подключении модуля через макетную плату или Troyka Slot Shield.

Troyka-контакты

На модуле выведено две пары Troyka-контактов.

Нижняя группа

  • Питание (V) — выходное напряжение с линейного регулятора напряжения. При установленном джаммпере .
  • Земля (G) — общая земля.

Верхняя группа

Сигнальный (V2) — входное напряжение подаваемое на линейный регулятор. При установленном джаммпере Vin=V2.

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40  вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Видео

Напряжение на выходе до 16 вольт, максимальное токопотребление до 500 мА. В результате проделанных манипуляций пришёл к выводу, что транзистор стоит поставить по-мощнее. Например КТ829А. Мало ли куда удумаю подключить готовый регулятор и что через него запитать. Стабилизированного напряжения на выходе данный регулятор не даёт, замечено некоторое увеличение, хоть и очень медленное. А так как производить пайку планирую по времени непродолжительно, то это не препятствие.

За неделю несколько раз попользовался временной сборкой, работа устроила. Пора придать устройство более-менее «человеческий» вид. Подсобрал комплектующие: корпус, для его устойчивости металлический ролик, держатель паяльника и соединительный винт.

Так как ролик решил использовать ещё и как дополнительный радиатор, то изолировал его от держателя паяльника при помощи пластмассовой шайбы.

После размещения основных компонентов установил на вход и выход гнёзда RGB (напряжение и ток не большие), это позволит избежать установки постоянных проводов (которые всегда вечно путаются). И пользоваться уже готовыми, полностью оборудованными. Со времён видеомагнитофонов их скопилось предостаточно.

Основных компонентов транзистор да два резистора, а проводов всё равно хватает.

Вот, что получилось. Светодиод не случайно подключён на выход регулятора – с изменением выходного напряжения изменяется яркость его свечения, причём весьма значительно. Оборудовать регулятор чем-то вроде шкалы не стал – на корпусе вокруг осталось вполне достаточное количество рисок от прежнего его предназначения. Вот так благодаря схеме, увиденной на форуме сайта, удалось решить вопрос питания низковольтного паяльника с нестандартным напряжением питания. Сборку произвёл Babay iz Barnaula.

   Обсудить статью ПОДСТАВКА И РЕГУЛЯТОР МОЩНОСТИ НИЗКОВОЛЬТНОГО ПАЯЛЬНИКА

Схема принципиальная регулятора 220В

Интересная особенность этой схемы заключается в том, что на её выходе можно получить напряжение большее, чем на входе. Это может понадобиться, например, если нужно по каким-либо причинам  увеличить номинальную мощность Вашего паяльника. Например, если нужно выпаять/впаять какую-либо массивную деталь, а температура жала паяльника для этого недостаточна. Повышение напряжения происходит благодаря его преобразованию из переменного в постоянное (после выпрямления диодным мостом и сглаживающего пульсации напряжения конденсатора С1). Таким образом, после выпрямителя, мы можем получим постоянное напряжение до 45 вольт

На первых двух элементах микросхемы К176ЛА7 здесь собран обычный генератор с возможностью регулировки скважности импульсов и ещё на двух её элементах — умощняющий буферный каскад. Частота генератора при указанных на схеме элементах С3, R2, R3 — указана порядка 1500Гц, а скважность импульсов  можно регулировать резистором R4 от 1,05 до 20

Эти импульсы через буферный каскад  и резистор R5 поступают на электронный ключ на транзисторах и с него — на нагрузку (паяльник). Напряжение на нагрузке примерно равно 40…45В в зависимости от мощности понижающего трансформатора на входе и мощности потребления паяльника).

Существует, также, вариант этой же схемы, но несколько переделанный для возможности работать с нагрузкой 220 вольт. Принцип работы этой схемы тот же, но в качестве ключа применён полевой транзистор и, соответственно, несколько изменены номиналы некоторых элементов для обеспечения работы схемы с напряжением:

Здесь управление «ключом» на транзисторе VT1 также производится широтно — импульсным методом. И напряжение на своём паяльнике Вы также можете регулировать в довольно широких пределах, от максимального (примерно 300 вольт) до минимального уровня (в десятки вольт). Пределы регулировки, выходного напряжения можно сузить до необходимых Вам пределов, если последовательно с диодами VD6, VD7 включить резисторы, как в предыдущей схеме. Номиналы этих резисторов могут быть в пределах от единиц до 100 кОм и подбираются (если это необходимо) при настройке. Ни в каких других настройках обе схемы не нуждаются и не критичны к применяемым деталям.

Мною была собрана и опробована вторая схема для паяльника на 220 вольт. Вместо фильтрующего конденсатора С1 был установлен номинал 25 мкФ х 400 В (больших ёмкостей просто не оказалось в наличии), а С2 увеличен до 47 мкФ х 16 В и С3 — 150 пФ (частота генератора при этом получилась порядка 30 кГц, что гораздо больше, чем в первой схеме. Но схема заработала при этом вполне нормально и, честно говоря, увеличивать эту ёмкость и менять частоту не пытался). Печатная плата рисовалась «от руки»:

Микросхему здесь можно заменить на другую из серий К561, К176 либо аналогичную  импортную, содержащую не менее четырёх инверторов/элементов «И-НЕ» или «ИЛИ-НЕ» (К561ЛЕ5, К176ЛЕ5, К561ЛН2, CD4001, CD4011 …). Транзистор я поставил типа BUZ90. При подключении нагрузки до 100 ватт (пробовал с обычной лампой накаливания) транзистор не грелся вообще и теплоотвод не потребовался (схема собиралась для паяльника мощностью 40 ватт). Но сильно грелся резистор R1, поэтому в качестве него пришлось поставить два двухваттных резистора по 47 кОм, включённых параллельно. И всё равно они греются при работе довольно ощутимо, поэтому пришлось сделать в корпусе ряд небольших отверстий в месте расположения этих резисторов для вентиляции:

Стабилитрон был поставлен Д814Г (можно применить любой на напряжение 6 — 14 вольт и на ток порядка 20 мА, в зависимости от диапазона питания и тока потребления применённый микросхемы), переменный резистор R2 — 220 кОм. Вместо диодов 1N4148 можно поставить КД522 или КД521. Электролитические конденсаторы обязательно должны быть на рабочее напряжение не меньше требуемого по схеме. В качестве простейшего индикатора работы был применён светодиод (можно любой, малой мощности), включённый параллельно выходу последовательно с гасящим резистором. Номинал резистора подбирается при настройке в зависимости от типа светодиода и необходимой яркости его свечения (анод светодиода подключается к «+» выводу выхода схемы).

Вся схема, как видно, легко умещается в корпусе от адаптера/зарядки. Её также можно использовать в качестве, например, регулятора яркости свечения лампы накаливания. Яркость регулируется плавно и никаких «мерцаний» лампы при этом замечено не было. 

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Схема:

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Как сделать регулятор мощности своими руками

Для сборки стабилизатора напряжения на симисторе для трансформатора понадобятся следующие компоненты:

  • сам симистор и электронные компоненты: динистор, потенциометр, диоды, конденсатор и сопротивления;
  • радиатор;
  • изолирующая теплопередающая прокладка;
  • пластиковый корпус;
  • печатная плата;
  • мультиметр;
  • паяльник.

Стабилизатор-самоделка

Пошаговая инструкция, как собрать самодельный регулятор мощности:

  1. Сперва необходимо определить некоторые характеристики устройства, для которого нужен регулятор: входное напряжение, силу тока, сколько фаз (3 или 1), а также, есть ли необходимость в точной настройке мощности на выходе.
  2. Нужно определиться с типом прибора — цифровое или аналоговое. Можно смоделировать электрическую цепь посредством скачиваемых утилит, таких как CircuitMaker или Workbench, чтобы проверить, насколько выбранный тип будет подходить конкретной электросети. Также это можно сделать и онлайн.
  3. После можно приступить к расчетам тепловыделения с использованием формулы: спад напряжения в регуляторе помножить на силу тока. Оба параметра должны быть указаны в спецификациях симистора. Ориентируясь на полученную с помощью формулы мощность, нужно выбрать радиатор.
  4. Купить радиатор, электронные компоненты и печатную плату.
  5. Осуществить разводку дорожек контактов и приготовить места, куда нужно устанавливать электронные компоненты, симистор и радиатор.
  6. Закрепить при помощи паяльника все компоненты на печатной плате. В качестве альтернативы плате можно воспользоваться навесным монтажом с короткими проводами. Нужно внимательно следить за полярностью подключаемых компонентов: симистора и диодов.
  7. Взять мультиметр и проверить сопротивление получившейся схемы. Полученное значение не должно отличаться от теоретического.
  8. Скрепить симистор и радиатор, проложив между ними прокладку и заизолировав винт, которым они соединяются.
  9. Полученную микросхему нужно поместить в корпус из пластика.
  10. Поставить потенциометр на минимальное значение и попробовать включить. С помощью мультиметра замерить напряжение на выходе. Медленно поворачивать регулируемую ручку потенциометра, наблюдая за переменой напряжения.
  11. Если схема будет работать так, как было задумано, то можно подсоединять нагрузку. В ином случае нужно отрегулировать мощность по-другому.

Ограничители максимального и обратного тока

При заполнении сильно разряженного аккумулятора или одновременном включении всех потребителей автомобиля возможно разрушение обмотки возбуждения или якоря. В обычном случае ток не превышает 18 – 20 А, что при напряжении 12 В эквивалентно мощности чуть более 200 Вт. Схема защиты выполняется по электромеханическому шаблону. Это подпружиненное реле, в момент превышения током порога максимума перебрасывающее контакты, втягивая сердечник магнитным полем индуктивности.

В цепь обмотки возбуждения включается резистор, гасящий часть разницы потенциалов на своём сопротивлении. Это вызывает снижение тока. Потом расход закономерно снижается, контакты замыкаются вновь. Реле работает аналогично предыдущему, но настроено по-другому и функционирует реже.

Самодельное устройство

Подобная защита способна отказать при образовании короткого замыкания или резкого повышения оборотов. От указанных недостатков избавлена электронная схема ограничителей тока.

Реле обратного тока блокирует разряд аккумулятора через обмотки генератора. Отключает батарею, когда напряжение генератора слишком низкое (11,8 – 13 В). Все время, пока работает генератор, ток течёт по параллельной обмотке. Когда напряжение превышает порог, подключается аккумулятор для зарядки. Реле устроено хитро, содержит две обмотки:

  1. Последовательная включена по цепи между генератором и ответвлением проводки к аккумулятору.
  2. Параллельная обмотка включена после ответвления, но перед нагрузкой.

В результате при включении генератора аккумулятор от него отделен разомкнутым контактом. По мере роста тока, текущего по обеим обмоткам, усиливается поле катушек. В момент достижения порогового значения реле замыкается и начинается зарядка аккумулятора. Если напряжение падает, батарея разряжается. Причём в последовательной обмотке ток теперь направлен к генератору (там потенциал ниже), а в параллельной течёт в том же направлении. Как результат, половинное усилие не способно удержать сердечник, и тот обрывает связь с генератором. Питание бортовой сети идёт от батарей.

По мере набора оборотов ситуация повторяется заново. В какой-то момент потенциал генератора превышает напряжение аккумулятора, и сеть начинает питаться отсюда. Через обе обмотки протекает полный прямой ток нагрузки, контакты замыкаются, батарея заряжается. И так далее. Помимо перечисленных выше минусов, присущих электромеханическим реле, на регулятор действует непостоянство напряжения аккумулятора. Вольтаж резко проседает при запуске стартера ввиду очевидных причин.

Оцените статью:
Оставить комментарий