Как проверить обмотки трансформатора
Содержание
- 1 Как проверить трансформатор мультимтером правильно
- 2 Как проверить трансформатор мультиметром
- 3 Стоимость испытания трансформаторов
- 4 Ссылки по теме
- 5 Проверка с помощью мультиметра дома
- 6 Импульсный трансформатор принцип работы
- 7 Какой трансформатор тока покупать
- 8 Проверка трансформатора тока
- 9 Как проверить трансформатор мультиметром
- 10 Настройка и подготовка мультиметра
Как проверить трансформатор мультимтером правильно
Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах
Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.
Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
А так как мощность – это произведение тока i на напряжение u
S = u∙i,
Откуда получаем простое уравнение:
Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.
Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.
Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.
Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
Как определить обмотки трансформатора
Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.
В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.
Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.
Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.
Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).
Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.
Соединение обмоток трансформатора
Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.
Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.
Как проверить трансформатор мультиметром
Основное назначение трансформатора – это преобразование тока и напряжения. И хотя это устройство выполняет достаточно сложные преобразования, само по себе оно имеет простую конструкцию. Это сердечник, вокруг которого намотано несколько катушек проволоки. Одна из них является вводной (носит название первичная обмотка), другие выходными (вторичные). Электрический ток подается на первичную катушку, где напряжение индуцирует магнитное поле. Последнее во вторичных обмотках образует переменный ток точно такого же напряжения и частоты, как и в обмотке входной. Если количество витков в двух катушках будет разным, то и ток на входе и выходе будет разным. Все достаточно просто. Правда, это устройство нередко выходит из строя, и его дефекты не всегда видны, поэтому у многих потребителей возникает вопрос, как проверить трансформатор мультиметром или другим прибором?
Необходимо отметить, что мультиметр пригодиться и в том случае, если перед вами лежит трансформатор с неизвестными параметрами. Так вот их с помощью этого прибора также можно определить. Поэтому, начиная работать с ним, надо в первую очередь разобраться с обмотками. Для этого придется все концы катушек вытянуть по отдельности и прозвонить их, выискивая тем самым парные соединения. При этом рекомендуется концы пронумеровать, определив, к какой обмотке они относятся.
Самый простой вариант – это четыре конца, по две на каждую катушку. Чаще встречаются устройства, у которых более четырех концов. Может оказаться и так, что некоторые из них «не прозваниваются», но это не значит, что в них произошел обрыв. Это могут оказаться так называемые экранирующие обмотки, которые располагаются между первичными и вторичными, они обычно соединяются с «землей».
Вот почему так важно при прозвонке обращать внимание на сопротивление. У сетевой первичной обмотки оно определяется десятками или сотнями Ом. Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток
Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю
Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток. Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю.
Стоимость испытания трансформаторов
Тип трансформаторов (мощность, кВА) | Стоимость испытаний |
---|---|
ТМ(Г)-25\10 | 2800 руб. |
ТМ(Г)-40\10 | 15000 руб. |
ТМ(Г)-63\10 | 16000 руб. |
ТМ(Г)-100\10 | 17000 руб. |
ТМ(Г)-160\10 | 18000 руб. |
ТМ(Г)-250\10 | 19000 руб. |
ТМ(Г)-400\10 | 20000 руб. |
ТМ(Г)-630\10 | 21000 руб. |
ТМ(Г)-1000\10 | 22000 руб. |
ТМ(Г)-1600\10 | 22500 руб. |
Дополнительные услуги | |
Испытание трансформаторного масла на пробой без отбора пробы | 5000 руб. |
Испытание ТП – выключатель нагрузки, ошиновка (без трансформатора) | 6500 руб. |
Испытание ТП с одним трансформатором, КТП | 16000 руб. |
Испытание ТП с двумя трансформаторами, 2 КТП | 28500 руб. |
Испытание ТП с двумя трансформаторами (блочного типа) ,2БКТП | 31000 руб. |
Испытание повышенным напряжением РУ (1 с.ш.) | 5500 руб. |
Испытание повышенным напряжением трансформатора напряжения | 3500 руб. |
Испытание повышенным напряжением трансформатора тока | 2500 руб. |
Ссылки по теме
-
Правила технической эксплуатации электроустановок потребителей
/ Нормативный документ от 9 февраля 2007 г. в 02:14 -
Библия электрика
/ Нормативный документ от 14 января 2014 г. в 12:32 -
Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10
/ Нормативный документ от 2 марта 2009 г. в 18:12 -
Кабышев А.В., Тарасов Е.В. Низковольтные автоматические выключатели
/ Нормативный документ от 1 октября 2019 г. в 09:22 -
Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами
/ Нормативный документ от 30 апреля 2008 г. в 15:00 -
Маньков В.Д. Заграничный С.Ф. Защитное заземление и зануление электроустановок
/ Нормативный документ от 27 марта 2020 г. в 09:05 -
Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
/ Нормативный документ от 17 октября 2019 г. в 12:36
Проверка с помощью мультиметра дома
В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.
Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.
Основы и принцип работы
Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.
Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.
Разновидности
Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.
При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.
Порядок проверки
Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.
Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.
Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.
Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.
Порядок проверки трансформатора мультиметром.
Импульсный трансформатор принцип работы
Принцип работы импульсных трансформаторов заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.
схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.
Временная диаграмма иллюстрирующая работу импульсного трансформатора
На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).
Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн
Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr
- Вmax – уровень максимального значения индукции;
- Вr –остаточный.
Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.
График смещения
Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).
Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.
Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:
при этом:
- Ψ – параметр потокосцепления;
- S – величина, отображающая сечение магнитопроводного сердечника.
Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:
в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.
Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:
Um x tu=S x W1 x ∆В
Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.
Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:
Здесь:
- L – перепад индукции;
- µа – магнитная проницаемость сердечника;
- W1 – число витков первичной обмотки;
- S – площадь сечения сердечника;
- lcр – длинна (периметр) сердечника (магнитопровода)
- Вr – величина остаточной индукции;
- Вmax – уровень максимального значения индукции.
- Hm – Напряженность магнитного поля (максимальная).
Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.
Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.
Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.
Какой трансформатор тока покупать
Всегда выгоднее покупать трансформатор тока, срок поверочных работ которого будет больше. Трансформаторы со сроком 8 лет стоят дороже, но не настолько, чтобы на этом экономить.
Компания «10 киловольт» предлагает свои услуги: мы гарантируем, что работа по замене трансформатора тока будет выполнена качественно, аккуратно и грамотно.
Мы подберем тип устройства согласно параметрам вашей энергосети, осуществим покупку и доставку оборудования на объект, обеспечим квалифицированный монтаж и тестирование новых трансформаторов тока. Компания предоставляет клиенту все документы, которые требуются по законодательству.
Обязательно обратите внимание на дату окончания срока эксплуатации трансформатора тока и электросчетчика
Проверка трансформатора тока
Устройства для пропорционального преобразования переменного тока до значений, безопасных для его измерений, называют трансформаторами тока.
Такие трансформаторы находят широкое применение в сфере электроснабжения и электроэнергетике и изготавливаются в различных конструктивных исполнениях, — от небольших моделей, размещаемых непосредственно на электронных платах, до сооружений внушительных размеров, устанавливаемых на специальные строительные конструкции.
Проверка ТТ проводится с целью выявления его работоспособности, при этом не производится оценка метрологических характеристик, которые определяют класс точности и сдвига фаз между вектором первичного и вторичного токов.
Как проверить трансформатор мультиметром
Трансформатор работает по простому принципу. В одной его цепи создается благодаря переменному току магнитное поле, а во второй цепи создается электрический ток благодаря магнитному полю. Это позволяет изолировать два тока внутри трансформатора. Чтобы испытать трансформатор, необходимо:
- Выяснить, поврежден ли внешне трансформатор. Внимательно осмотрите оболочку трансформатора на наличие вмятин, трещин, дыр и иных повреждений. Часто трансформатор портится от перегрева. Возможно, вы увидите следы расплавления или вздутия на корпусе, тогда дальше смотреть трансформатор не имеет смысла и лучше сдать его в ремонт.
- Осмотрите обмотки трансформатора. Должны иметься явно напечатанные метки. Не помешает и иметь с собой схему трансформатора, где можно посмотреть, как он подключен и другие подробности. Схема всегда должна присутствовать в документах или, в крайнем случае, на странице разработчика в интернете.
- Найдите также вход и выход трансформатора. Напряжение обмотки, которая создает магнитное поле, должно быть помечено на ней и в документах на схеме. Также должно быть отмечено и на второй обмотке, где генерируется ток, напряжение.
- Найдите фильтрацию на выходе, где происходит трансформация мощности из переменной в постоянную. К вторичной обмотке должны быть подсоединены диоды и конденсаторы, которые и выполняют фильтрацию. Они указаны на схеме, но не на трансформаторе.
- Подготовьте мультиметр для измерения измерения напряжения в сети. Если крышка панели мешает добраться до сети, то удалите ее на время проверки. Мультиметр можно всегда купить в магазине.
- Подключите входную цепь к источнику. Используйте мультиметр в режиме переменного тока и измерьте напряжение первичной обмотки. Если напряжение падает ниже, чем на 80% от ожидаемой величины, то вероятна неисправность первичной обмотки. Тогда просто отсоедините первичную обмотку и проверьте напряжение. Если оно поднялось, то обмотка неисправна. Если же не поднялось, то неисправность в первичном входном контуре.
- Также измерьте напряжение на выходе. Если есть фильтрация, то измерение проводится в режиме постоянного тока. Если ее нет, то в режиме переменного тока. Если напряжение неправильно, то необходимо по очереди проверить весь блок. Если все детали в порядке, то неисправен сам трансформатор.
Часто можно услышать жужжащий или шипящий звук от трансформатора. Это означает, что трансформатор вот-вот сгорит и его надо срочно отключить и отдать в ремонт.
Помимо этого, часто обмотки имеют разный потенциал заземления, что влияет на расчет напряжения.
Электрический трансформатор — довольно распространенное устройство, используемое в быту для решения целого ряда задач.
И в нем могут случаться поломки, выявить которые поможет прибор для измерения параметров электротока — мультиметр.
Из этой статьи вы узнаете, как проверить трансформатор тока мультиметром (прозвонить), и каких правил следует придерживаться при этом.
Как известно, любой трансформатор состоит из следующих компонентов:
- первичная и вторичная катушки (вторичных может быть несколько);
- сердечник или магнитопровод;
- корпус.
Таким образом, перечень возможных поломок довольно ограничен:
- Поврежден сердечник.
- Перегорел провод в какой-либо из обмоток.
- Пробита изоляция, вследствие чего имеется электрический контакт между витками в катушке (межвитковое замыкание) либо между катушкой и корпусом.
- Изношены выводы катушек или контакты.
Трансформатор тока Т-0,66 150/5а
Некоторые из дефектов определяются визуально, поэтому трансформатор в первую очередь нужно внимательно осмотреть.
Вот на что при этом следует обращать внимание:
- трещины, сколы изоляции либо ее отсутствие;
- состояние болтовых соединений и клемм;
- вздутие заливки или ее вытекание;
- почернения на видимых поверхностях;
- обуглившаяся бумага;
- характерный запах горелого материала.
Если явных повреждений нет, следует проверить устройство на работоспособность при помощи приборов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На преобразователях больших размеров данная информация может быть представлена в виде графического изображения.
Если таковое отсутствует, можно воспользоваться справочником, в котором следует найти свой трансформатор по маркировке. Если он является частью какого-то электроприбора, источником данных могут стать спецификация или принципиальная электрическая схема.
Настройка и подготовка мультиметра
Для правильной работы с мультиметром нужно его настроить. Это значит, что нужно выбрать величину, предполагаемую к измерению, и предел ее функционирования, то есть то значение, за которое она не будет выходить.
Символы на лицевой панели измерителя
Мультиметром можно производить проверку различных электротехнических величин: силы тока, напряжения, сопротивления, частоты. Также с его помощью производится тестирование работоспособности различных радиоэлементов: резисторов, конденсаторов, диодов и транзисторов. Сама часть слова «мульти» подразумевает наличие нескольких типов измерений. Для выбора этих типов на передней панели тестера предусмотрена ручка, поворотом которой можно выбрать необходимую величину.
В большинстве случаев символы, изображенные на корпусе мультиметра, изображают принятые в физике обозначения электротехнических величин либо условно-графические обозначения радиоэлементов, предполагаемых к тесту. На лицевой панели можно встретить такие символы:
- U — символ напряжения;
- В — обозначает вольты, это тоже мера напряжения;
- I — это ток, при установке ручки на это обозначение будет измерена сила тока;
- А — амперы, мера силы тока;
- Ω, R — символ сопротивления;
- Ом — мера сопротивления, Омы;
- -| |- — таким значком указывается конденсатор, мультиметр измерит его емкость;
- Диоды и транзисторы тоже маркируются на корпусе тестера своими условно-графическими обозначениями.
Но не только измеряемые величины обозначены на лицевой панели тестера: отверстия для подключения щупов тоже имеют свои обозначения. Одно из гнезд измерителя будет всегда занято черным щупом. Это общее отверстие, оно обычно промаркировано надписью COM, что значит «общий». Кроме него, у мультиметра есть два или три рабочих отверстия, предназначенные соответственно для измерения напряжения, малого тока и большого тока.
Гнездо, отмеченное знаком U, Ω, Hz предназначено для замеров сопротивления, напряжения и частоты, а также для теста различных радиоэлементов. Сюда же нужно устанавливать щуп для прозвонки проводов и кабелей на обрыв.
https://youtube.com/watch?v=DU1hvRCR2Rw
Отверстие с надписью мА (mA) используется для проверки малых токов (до 1 ампера), а с надписью А (10 А) нужно для измерения высокого ампеража.
Пределы измеряемых величин
Кроме обозначений величин проверяемых параметров, на лицевую панель мультиметра нанесены обозначения пределов измерений. В более совершенной аппаратуре этих надписей нет, так как электроника тестера сама выбирает предел, исходя из подаваемого ей на вход сигнала. Однако большинство мультиметров предполагает ручную настройку пределов измерений.
Обычно пределы заданы числами, кратными 2: 2, 20, 200… Таким образом, при выборе предела следует руководствоваться правилом: выбирать ограничение выше измеряемого, но одного порядка. Например, для измерения напряжения в домашней электросети (в розетке) нужно выбрать режим измерения переменного напряжения и предел измерения 2000 вольт. А для прозвонки проводов мультиметром нужно выбрать режим сопротивления и минимальный предел измерений 2 Ом. Однако для длинных кабелей требуется больший предел измерений — 20 Ом. Дополнительно можно включить кнопкой звуковой сигнал, который подается при возникновении короткого замыкания (наличия цепи).
Подключение тестера
Для проверки параметров электроцепей и прозвонки мультиметром проводов и кабелей необходимо правильно подключить измеритель в тестируемую цепь. При проверке на целостность цепи проверяется необходимый участок, заключенный между выводами измерителя. Поэтому тестер подключается к выводам цепи. Если измеряется напряжение, мультиметр нужно подключить параллельно участку, на котором проверяется напряжение.
При измерении тока мультиметр нужно подключить последовательно в разрыв тестируемой цепи, например, между выводом источника питания и клеммой нагрузки.