Принцип работы синхронного генератора
Содержание
- 1 Сфера применения
- 2 Виды
- 3 Принцип действия
- 4 История создания
- 5 Внешняя характеристика — синхронный генератор
- 6 Термины и определения ›› Синхронный генератор
- 7 Методы регулирования реактивной и активной мощности генератора.
- 8 Виды асинхронных машин
- 9 Устройство
- 10 Основы релейной защиты ›› 10-1. Повреждения и ненормальные режимы работы синхронных генераторов. Типы защит генераторов
- 11 Виды
Сфера применения
Асинхронные генераторы пользуются популярностью, и среди преимуществ подобных станций выделяют:
- устойчивость к перегрузкам и КЗ;
- простую конструкцию;
- небольшой процент нелинейных искажений;
- стабильную работу за счет небольшого значения клирфактора;
- стабилизацию напряжения на выходе.
При подключении генератор выделяет небольшой количество реактивного тепла, поэтому его конструкция не требует установки дополнительных охлаждающих устройств. Это позволяет выполнить надежную герметизацию внутренней полости агрегата для ее защиты от проникновения влаги, грязи или пыли.
За счет своих достоинств генераторы активно используются в качестве источников электричества в следующих сферах и областях:
- транспортной;
- промышленной;
- бытовой;
- сельскохозяйственной.
Также мощные агрегаты встречаются в автомастерских. Кроме того, их упрощенная конструкция позволяет использовать устройства в качестве источников электрической энергии. К ним подключают аппараты для сварки, а также с их помощью организуют подачу питания важным объектам здравоохранения.
Таким образом, обеспечить себя энергией могут даже удаленные от центральных сетей поселки и хозяйства.
Виды
Сегодня производители выпускают несколько видов синхронных генераторов. Среди существующих классификаций особого внимания заслуживают несколько. В первую очередь стоит рассмотреть деление агрегатов по конструктивному устройству. Генераторы бывают двух видов.
Бесщеточный. Конструкция электрогенератора подразумевает использование обмоток статора. Они размещены так, чтобы сердечники элементов совпадали с направлением либо магнитных полюсов, либо сердечников, которые предусмотрены на катушке. Максимальное количество зубьев магнита не должно превышать 6 штук.
Следующая классификация подразумевает деление мобильных станций на отдельные виды.
Гидрогенераторы. Отличительная черта устройства – ротор с выраженными полюсами. Такие агрегаты используют для производства электроэнергии там, где нет необходимости в обеспечении большого количества оборотов устройства.
Выделяют несколько распространенных моделей подобных устройств.
Шаговые. Их используют для обеспечения работоспособности приводов, установленных в механизмах, которые имеют цикл работы старт-стоп.
Безредукторные. В основном используются в автономных системах.
Первые представляют собой устройства, в которых четко просматриваются полюса. Они отличаются небольшой скоростью вращения ротора. Вторая категория имеет в своей конструкции цилиндрический ротор, у которого отсутствуют выступающие полюса.
Принцип действия
С принципом работы устройства разобраться не так уж сложно. Он заключается во вращении магнитной рамки с целью создания электрического поля. В процессе вращения рамки возникают магнитные линии, начинающие пересекать ее контур. Пересечение способствует образованию электрического тока.
Чтобы определить, куда движутся потоки электрической энергии, необходимо воспользоваться правилом буравчика. При этом стоит отметить, что на некоторых участках движение тока противоположное. Направления постоянно меняются при достижении очередного полюса, который расположен на магните. Такое явление называется переменным током, и доказать это условие способно подключение рамки к отдельному магнитному кольцу.
Зависимость между величиной тока в рамке и скоростью вращения ротора системы пропорциональная. Таким образом, чем сильнее будет вращаться рамка, тем больше электричества сможет поставить генератор. Такой показатель характеризуется частотой вращения.
Согласно установленным нормам, оптимальный показатель частоты вращения в большинстве стран не должен превышать 50 Гц. Это значит, что ротор должен выполнять 50 колебаний в секунду. Для вычисления параметра необходимо условиться, что один поворот рамки приводит к изменению направления тока.
Если вал успевает повернуться 1 раз за секунду, это означает, что частота электрического тока составляет 1 Гц. Таким образом, для достижения показателя в 50 Гц потребуется обеспечить правильное количество вращений рамки за секунду.
Зависимость в этом случае обратно пропорциональная. Таким образом, чтобы обеспечить частоту в 50 Гц, потребуется снизить скорость примерно в 2 раза.
Дополнительно стоит отметить, что в некоторых странах установлены другие нормы вращения ротора. Стандартным показателем частоты является показатель в 60 Гц.
История создания
В конце XIX века компания Роберта Боша впервые разработала нечто похожее на генератор. Устройство было способно зажечь двигатель. В процессе испытаний было выявлено, что машина не подходит для постоянного использования, однако разработчики смогли усовершенствовать аппарата.
В 1890 году фирма практически полностью перешла на производство данного оборудования, так как оно приобрело большую популярность. В 1902 ученик Боша создал зажигание, задействуя высокое напряжение. Устройство было способно добыть искру между двумя электродами свечи, что сделало систему более универсальной.
Начало 60-х годов XX века стало эпохой распространения генераторов по всему миру. И если раньше устройства были востребованы только в автомобилестроении, то сейчас подобные агрегаты способны обеспечить электроэнергией целые дома.
Внешняя характеристика — синхронный генератор
Внешние характеристики синхронного генератора.| Регулировочные характеристики синхронного генератора. |
Внешние характеристики синхронного генератора при активной ( ф 0), активно-индуктивной ( ф 0) и активно-емкостной ( ф 0) нагрузках приведены на рис. 11.6. Они являются наглядной иллюстрацией того, что говорилось в § 11.4 о влиянии характера нагрузки на напряжение генератора.
К примеру 2. Построение практической диаграммы э. д. с. |
Внешними характеристиками синхронного генератора называют зависимость напряжения на его зажимах от тока нагрузки при неизменных значениях тока возбуждения, частоты и коэффициента мощности.
Используя внешние характеристики синхронных генераторов, изображенные на рис. 77, а указать, в каких пределах может меняться ток каждого из потребителей, если напряжение на выводах генераторов должно быть не менее 220 В.
Используя внешние характеристики синхронных генераторов, изображенные на рис. 90 а, указать, в каких пределах может меняться ток каждого из потребителей, если напряжение на выводах генератора должно быть не менее 220 В.
Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе ( кривая / на рис. 33 — 10) существует значительная продольная размагничивающая реакция якоря ( см. диаграммы рис. 33 — 1, аи 33 — 2, а), которая растет с увели — цн чением тока нагрузки /, и поэтому U с увеличением / уменьшается. При чисто активной нагрузке ( кривая 2 на рис. 33 — 10) также имеется продольная размагничивающая реакция якоря, но угол ty между Е и / меньше, чем в предыдущем случае, поэтому продольная размагничивающая реакция якоря слабее и уменьшение U с увеличением / происходит медленнее. При опережающем токе ( кривая 3 на рис. 33 — 10) возникает продольная намагничивающая реакция якоря ( см. рис. 33 — 1, б и 33 — 2, б), и поэтому с увеличением / напряжение U растет.
Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе ( кривая 1 на рис. 33 — 10) существует значительная продольная размагничивающая реакция якоря ( см. диаграммы рис. 33 — 1, аи 33 — 2, а), которая растет с увеличением тока нагрузки /, и поэтому U с увеличением / уменьшается.
Как снимаются внешние характеристики синхронного генератора.
Для снятия внешних характеристик синхронного генератора необходимо возбудить его на холостом ходу до номинального напряжения. По этим показаниям снимают первую точку характеристики. Для снятия второй точки включают поочередно активную, индуктивную и емкостную нагрузки и фиксируют показания амперметра и вольтметра. При проведении опыта ток возбуждения оставляют неизменным.
При снятии внешней характеристики синхронного генератора возможны — два случая.
Принципиальная схема компаундирования трехфазной цепи. |
Компаундирование улучшает внешнюю характеристику синхронного генератора, так как с увеличением нагрузки автоматически и пропорционально ей увеличивается возбуждение, а также форсирует возбуждение пропорционально пусковым токам ко-роткозамкнутых асинхронных электродвигателей, чем облегчается их пуск и стабилизируется напряжение на шинах станции.
На рис. 26.4 представлены внешние характеристики синхронного генератора при разных нагрузках: 1 — активной, 2 — индуктивной и 3 — емкостной. Под внешней характеристикой синхронного генератора понимают графически изображенную зависимость напряжения на его зажимах от тока нагрузки при постоянных значениях тока возбуждения, скорости вращения и коэффициента мощности.
На рис. 13.14 показаны внешние характеристики синхронного генератора для активной ( ф 0), для активно-индуктивной ( ф 0, когда напряжение U опережает ток /) и для активно-емкостной ( ф 0, когда напряжение U отстает от тока /) нагрузок.
Термины и определения ›› Синхронный генератор
синхронная машина, работающая в генераторном режиме. С. г. используют обычно в качестве источников переменного тока постоянной частоты и устанавливают на электростанциях, в электрических установках, на транспорте и т. д. Применение С. г. началось в 70-х гг. 19 в. в связи с изобретением свечи П. Н. Яблочкова. Наибольшее распространение имеют С. г. для получения тока промышленной частоты, роторы которых приводятся во вращение паровыми (см. Турбогенератор) или водяными (см. Гидрогенератор) турбинами. С. г. строят также с приводом от газовых турбин, двигателей внутреннего сгорания, ветро- или электродвигателей. Обмотки ротора С. г. питаются постоянным током от отдельного генератора (см. Возбудитель электрических машин), размещаемого обычно на общем валу с С. г. и приводимого совместно с ним во вращение, или от выпрямительного устройства. При вращении ротора его магнитное поле наводит в трёхфазной обмотке статора переменную эдс, частота которой f = р.п, где р и n — соответственно число пар полюсов и частота вращения ротора. Быстроходные С. г. (турбогенераторы) имеют малое число пар полюсов (р = 1, 2), а в тихоходных (гидрогенераторах) р достигает нескольких десятков. Величина эдс регулируется изменением тока в обмотке ротора.
Методы регулирования реактивной и активной мощности генератора.
Как только что видели, что если изменять возбуждение генератора, то тем самым будем изменять реактивную мощность, отдавать, либо потреблять.
Регулировать активную мощность можно только изменяя механическую мощность, со стороны паровой турбины, либо гидротурбины. При увеличении отдаваемой активной мощности, необходимо увеличить и механическую мощность со стороны турбины.
4.13. Синхронные двигатели
В электроприводах, где не требуются частые пуски и регулирования скорости целесообразно применять синхронные двигатели вместо короткозамкнутых. При мощности выше 300 КВт, синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosf = 1 и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшается падение напряжения и потери в ней. С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, кроме того, синхронные двигатели должны иметь электромагнитный возбудитель для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором, однако, при мощности более 300 КВт они экономически выгодны при совместной работе с сетью. Пуск синхронных двигателей намного сложнее асинхронных.
4.13.1. Векторные диаграммы синхронного двигателя
При работе синхронной машины в режиме генератора напряжение на его зажимах равно разности между ЭДС Еи падениями напряжений на различных индуктивных сопротивлениях, а при работе в режиме двигателя напряжение Uс равно сумме ЭДС и падений напряжения на индуктивных сопротивлениях. Покажем векторную диаграмму для явнополюсного синхронного двигателя в перевозбужденном режиме при известных параметрах r, Xd, Xq.
Рис. 38 Рис. 39.
При перевозбужденном режиме (рис 38) ток опережает напряжение на угол f. Ток якоря I разложим по осям d,q относительно вектора Е. Токи Id, Iq создают потоки, а они создают ЭДС Ea = -Ir, сумма ЭДС дает нам вектор напряжения Uc. Угол Q – угол между вектором напряжения сети Uc и составляющей напряжения, которая уравновешивает ЭДС Е.
На рис. 39 представлена упрощенная диаграмма синхронного двигателя для неявнополюсной машины.
В синхронном неявнополюсном двигателе ток по осям не разлагается. Синхронное индуктивное сопротивление Xc=Xd=Xs+Xad. Ток статора создает поток рассеяния и поток якоря. Оба этих потока создают ЭДС – iIXc отстающей от вектора тока на 90. Напряжение сети Uс уравновешивается суммой ЭДС Е=-Uc. Если из этой суммы вычесть ЭДС – iIXc, то получим вектор ЭДС Е. ЭДС Е и –iIXc уравновешиваются составляющими напряжения –Е и iIXc. Угол Q есть угол сдвига между вектором напряжения сети Uc и составляющей напряжения –Е.
Виды асинхронных машин
Различные виды АГ могут отличаться по следующим рабочим характеристикам:
- Типом вращающейся части генерирующего устройства – его ротора;
- Количеством выходных или статорных обмоток в генераторе (числом рабочих фаз);
- Схемой включения катушек трехфазного генератора – треугольником или звездой, а также способом их размещения и укладки на полюсах статора (фото ниже);
Размещение обмоток статора
Наличием или отсутствием отдельной обмотки возбуждения.
В соответствие с первым из этих признаков, все известные разновидности АГ оснащаются короткозамкнутым или фазным ротором. Первый из них изготавливается в виде цельной конструкции цилиндрической формы, состоящей из отдельных штырей с двумя замыкающими их кольцами (типа «беличье колесо»).
Фазный ротор, в отличие от своего короткозамкнутого аналога, имеет индуктивную обмотку из изолированного провода, обеспечивающую создание динамического электромагнитного поля. Из-за особенностей своей конструкции такой ротор имеет высокую стоимость изготовления и нуждается в специализированном обслуживании.
Выходные обмотки статора, как и весь генератор, могут быть однофазными или трехфазными, что определяется непосредственным назначением данного агрегата (когда требуется источник напряжения 220 или 380 Вольт). Относительно первого из этих исполнений всё достаточно ясно, а вот у трехфазной модификации АГ имеется ещё одна особенность, касающаяся электрической схемы включения обмоток.
Известно, что для формирования любой трехфазной питающей сети в электротехнике применяются два вида включения обмоток, смещённых в векторном представлении одна относительно другой на 120 градусов. Это:
Включение звездой, когда начала катушек соединены в одной точке, где формируется нулевая жила, а их концы расходятся по трём линиям питания (вместе с нулевым проводом их получается четыре, как это указано на фото ниже);
4-х проводное включение по схеме «звезда»
Подсоединение по схеме «треугольник», при котором конец одной катушки соединяется с началом второй и так далее до полного замыкания цепочки. Второй вариант включения используется в 3-х проводных линиях энергоснабжения, поскольку в этой схеме отсутствует нулевой провод.
В каждом изделии АГ подключение по той или иной схеме реализуется вполне конкретными способами, позволяющими поместить провода всех обмоток статора между полюсами его сердечника. Они наматываются таким образом, чтобы каждая секция фазных катушек A, B и C была сдвинута по окружности одна относительно другой точно на 120 градусов.
В заключение обзора генераторных устройств обратим внимание на возможность изготовления АГ из асинхронного двигателя. Подобная перспектива появляется, благодаря известному принципу обратимости действия электрических машин, согласно которому направление преобразования энергии может выбираться произвольно
Устройство
Генератор имеет простую структуру. Основными элементами устройства являются:
- ротор;
- статор.
Первый представляет собой подвижную деталь, а второй элемент в процессе эксплуатации сохраняет свое положение. В агрегате не сразу удается заметить обмотки проволоки, для изготовления которой обычно задействуют медь. Однако обмотки есть, только выполнены они из алюминиевых стержней и отличаются улучшенными характеристиками.
Внутреннее пространство заполнено пластинами из стали, а сами стержни из алюминия впрессованы в пазы, предусмотренные в сердечнике подвижного элемента. На валу генератора расположен ротор, а сам он стоит на специальных подшипниках. Фиксацию элементов агрегата обеспечивают две крышки, зажимающие вал с двух сторон. Корпус выполнен из металлического материала. Некоторые модели дополнительно оснащены вентилятором для охлаждения устройства во время работы, а на корпусе располагаются ребра.
Преимуществом генераторов является возможность их использования в сети с напряжением как в 220 В, так и с более высокими показателями. Для правильного подключения агрегата необходимо выбрать подходящую схему.
Основы релейной защиты ›› 10-1. Повреждения и ненормальные режимы работы синхронных генераторов. Типы защит генераторов
а) Повреждения обмотки статора
Многофазные короткие замыкания относятся к наиболее тяжелым повреждениям генератора. Они сопровождаются большими токами, в несколько раз превышающими номинальный ток генератора. Для защиты от многофазных коротких замыканий, вызывающих значительные разрушения в статоре, на всех генераторах мощностью выше 1 000 кВт при наличии выводов отдельных фаз со стороны нейтрали устанавливается продольная дифференциальная защита, действующая на отключение генератора.На генераторах малой мощности для защиты от многофазных коротких замыкании допускается применение более простых устройств: максимальной токовой защиты или отсечки, установленной со стороны выводов генератора, а также автоматов или плавких предохранителей.
Виды
Существует несколько классификаций асинхронных генераторов. Они могут отличаться следующими факторами.
- Типом ротора – вращающейся части конструкции. Сегодня выпускаемые агрегаты данного типа предусматривают в своей конструкции фазный или короткозамкнутый ротор. Первый оборудован индуктивной обмоткой, в качестве которой выступает изолированный провод. С его помощью и удается создать динамическое магнитное поле. Второй вариант – единая конструкция, имеющая цилиндрическую форму. Внутри нее расположены штыри, оборудованные двумя замыкающими кольцами.
- Количеством рабочих фаз. Под ними подразумевают выходные или статорные обмотки, расположенные внутри устройства. Выходные при этом могут иметь одну фазу или три. Этот показатель определяет назначение генератора. Первый вариант доступен для эксплуатации при напряжении в 220 В, второй – 380 В.
- Схемой включения. Выделяют несколько способов организации работы трехфазного генератора. Можно подключить катушки к устройству, применяя схему «звезда» или «треугольник». Также их можно разместить на полюсах неподвижного элемента – статора.