Проводники и непроводники электричества

Полупроводник.

Полупроводники – это вещества сочетающие свойства проводников и не проводников.

Полупроводник в нормальном состоянии пропускает определённое количество тока, либо вообще не пропускает. Но при изменении их температуры, начинает очень хорошо пропускать заряды.

Играя на этих свойствах: повышая или понижая температуру, можно делать так, чтобы полупроводник либо пропускал ток, либо нет, становясь диэлектриком.

Пример.

К таким материалам относятся: кремний, германий, селен, смеси различных химических веществ.

Полупроводники нашли широкое применение в электронике. Их используют при изготовлении радиодеталей: транзисторы, диоды, тиристоры и другие.

сравнительная таблица

_________________________________________________________________________________

Надеюсь, информация оказалась полезной.

Пишите, комментируйте,

Электроскоп помогает изучать свойства электрических зарядов

Первое устройство, с помощью которого появилась возможность наблюдать и количественно оценивать электризацию тел, придумал и изготовил в 1600 г. английский исследователь Уильям Гилберт. Этот прибор был назван электроскопом. Название получилось от комбинации двух греческих слов: янтарь (электрон) и обнаруживать (скопео). Следующие поколения ученых улучшили конструкцию электроскопа, но основные черты, заложенные Гилбертом, остались прежними.

Рис. 1. Как устроен электроскоп

Электроскоп представляет собой простой, наглядный прибор. Основная идея работы его конструкции основана на свойстве отталкивания тел, заряженных одноименными зарядами. На одном из концов металлического прутка (стержня) закреплены две полоски тонкой бумаги или металла (фольги). Если к противоположному концу поднести заряженный предмет (расческу, палочку из эбонита), то полоски, оттолкнувшись друг от друга, образуют перевернутую римскую цифру V.

Заряды с предмета перетекают по металлическому прутку на полоски, которые получив одноименный заряд, отталкиваются друг от друга, что позволяет экспериментатору видеть наличие зарядов в электроскопе. Полоски помещают внутрь стеклянного, прозрачного сосуда (колпака), чтобы случайные потоки воздуха не влияли на наблюдения. Стержень вставляется в колпак через резиновую пробку.

Из чего состоит ток (свойства)?

Движение заряженных частиц по цепи обуславливает проявление следующих электрических свойств:

  • Тепловых. При движении заряженных частиц по проводнику (полупроводнику), его температура повышается. Данное явление лежит в основе работы нагревательных приборов (плиты, обогреватели, чайники и др.). Количество образовавшейся тепловой энергии зависит от напряжения на данном участке цепи, времени протекания самого тока и подчиняется закону Джоуля-Ленца.
  • Химических. Электролиты, имеющие в своем составе положительные ионы, проходят через процесс электролиза. Он представляет собой процесс окислительно-восстановительного характера, происходящего на электродах в процессе движения заряженных частиц сквозь раствор или расплав. К положительно заряженному аноду, в результате электролиза, присоединяются анионы с отрицательным зарядом, к отрицательному катоду притягивается положительный катион. Таким образом, вещества, которые присутствуют в электролите после электролиза выделяются на электродах источника электричества.

Электролиз

Магнитных. При прохождении заряда сквозь проводник, вокруг него возникает пространство магнитного характера. Проводник характеризуется магнитными свойствами. Если вблизи от него находится, например, стрелка компаса, она примет положение перпендикулярное проводящему предмету. Первым ученым, наблюдавшим магнитные свойства, стал Эрстед в 1820 году, а цифровые закономерности этого процесса установил Ампер.

Магнитное поле проводника

  • Световых. Ярким примером проявления подобных свойств является лампа накаливания. Ее нагревательный элемент в виде спирали, в результате прохождения по ней тока, нагревается и начинает светиться белым светом. На долю световой энергии приходится 5% от общего количества электроэнергии, остальная превращается в тепло.
  • Механических. Любой проводник, после прохождения по нему заряженных частиц, отмечается наличием вокруг себя магнитного поля. Магнитные действия преобразовываются в движения. Явление нашло применение в реле, электродвигателях, магнитных подъемниках и других устройствах. Механические свойства объясняются законом Ампера, который был сформулирован еще в 1820 году.

Важно! Исходя из выше изложенной информации, можно сделать вывод, что ток может обеспечивать различного рода воздействия, которые проявляют себя как по отдельности, так и в комбинациях

Электрическая цепь и ее составные части

Источником электрического тока может служить батарея (гальванический элемент).

На электростанции электрический ток вырабатывают генераторы, приводимые в действие от паровых и гидравлических турбин.

Электродвигатели, лампы, плитки, работающие от электрического тока, называют приемниками или потребителями. Электрическую энергию доставляют к приемнику по проводам.

Чтобы включать и выключать в нужное время приемники электричества, применяют выключатели. Источник тока, приемники и выключатели, соединенные между собой проводами, составляют электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой, т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется или вместо него будет поставлен изолятор, ток в цели прекратится. Такую цепь называют разомкнутой.

Вопросы

  1. Какова роль источника тока в цепи?
  2. Из каких частей состоит электрическая цепь?
  3. Что такое замкнутая цепь? разомкнутая?
  4. Какие приемники или потребители вы знаете?

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}

где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}

Проект «Сопротивление: медь – лучший проводник?»

Сопротивление
– это
совокупность препятствий для потока
электронов. Обозначается буквой R. Оно
зависит от длины и толщины проводника,
а также от материала, из которого он
сделан, поэтому значение может различаться
для разных его участков. Измеряется оно
в омах (Ом). Постоянное свойство конкретного
материала оказывать сопротивление
называется сопротивляемостью, обозначаемой
греческой буквой ρ (ро) и измеряемой в
ом-метрах (Ом-м).

Формула
для вычисления сопротивления данного
отрезка провода выглядит так:

R = ρL/S,

где
R обозначает сопротивление в омах, L –
длину провода в метрах, S – площадь его
сечения в квадратных метрах, а ρ –
удельное сопротивление проводника в
ом-метрах.

Электрическая
проводимость – величина, обратная
сопротивляемости. Она показывает, как
свободно материал позволяет протекать
электричеству. Обозначается она G и
измеряется в сименсах (Cм). См=Ом-1.

G= σ S/L,

где σ — удельная проводимость.

Удельная
проводимость обратно пропорциональна
удельному сопротивлению ρ.

σ = 1/ρ.

В
данном эксперименте вы сможете вычислить
сопротивляемость и проводимость
тестируемых материалов, используя закон
Ома, согласно которому напряжение
определяется как произведение силы
тока на сопротивление. Измерить силу
тока вам поможет амперметр, а напряжение
– вольтметр.

V=IR,

где
V – напряжение в вольтах, I – сила тока
в амперах, а R – сопротивление в омах.

Цель
– выяснить сопротивляемость различных
материалов, а также вычислить их
проводимость.

Что
нам понадобится:

  • батарейка 9 вольт;
  • по 30 см тонкого и толстого медного провода без изоляции;
  • по 30 см тонкого и толстого железного провода без изоляции (с такими же диаметрами);
  • провода из других материалов;
  • кусачки;
  • амперметр;
  • вольтметр;
  • линейка.

Ход
эксперимента:

Соблюдайте
меры безопасности при работе с
электричеством.

  1. Присоедините плюс амперметра к минусу батарейки 9 вольт.
  2. Присоедините минус амперметра к концу одного из проводов.
  3. Присоедините его другой конец к плюсу батареи 9 вольт.
  4. Используйте вольтметр, чтобы выяснить напряжение на участках провода разной длины (начните с 2 см, затем измерьте для 3 см, 4 см и так далее). Следите, чтобы плюс вольтметра касался начала провода.
  5. Запишите величину силы тока (с амперметра) и напряжения (с вольтметра) для каждой длины.
  6. Воспользуйтесь законом Ома, чтобы определить сопротивление, а также понять, как длина, толщина и материал влияют на него.
  7. Отобразите результаты с помощью графика. Длину провода в метрах отложите по оси x, а сопротивление в омах – по оси y.
  8. Вычислите сопротивляемость с помощью формулы: R = ρL/S,
    • Здесь R – сопротивление в омах,
    • ρ – удельное сопротивление в ом-метрах,
    • L – длина провода в метрах,
    • S – площадь его сечения в метрах квадратных.
  9. Используйте значение удельного сопротивления проводника ρ чтобы вычислить удельную проводимость σ и проводимость G.

Вывод:

Какой
материал обладает большей сопротивляемостью?
Проводимостью? Сформулируйте гипотезу,
какая существует зависимость
сопротивления от температуры.

Чем
тоньше провод, тем меньше его сопротивление.
У меди – сопротивляемость ниже, поэтому
она считается более подходящим проводником
электричества по сравнению с железом.
Почему? Сопротивление провода тем выше,
чем он длиннее. Поскольку оно является
характеристикой материала, через который
протекают электроны, вполне логично,
что чем больше задействованного материала
(в длину), тем больше получится
сопротивление. Сопротивляемость –
постоянная величина для конкретного
материала, поэтому сопротивление прямо
зависит
от сечения. На графике этой зависимости
наклон кривой демонстрирует именно
сопротивляемость.

Итак,
медь лучше проводит электричество,
чем железо? Да, поскольку электричество
может протекать через нее с меньшим
сопротивлением. Это является постоянным
свойством меди.

Вычислите
сопротивление определенного участка
провода с помощью закона Ома, так как
элементы цепи соединены последовательно,
а сила тока одинакова на любом ее участке.

Что такое проводник?

Проводник – это вещество или материал, которое отлично проводит электрический ток.

Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер

Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух – это ядро, а овцы вокруг него – это электроны.

Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.

То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.

В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.

Чем больше свободных электронов, тем лучше проводимость вещества.

2 вариант

1. Трем парам одинаковых бумажных цилиндриков сообщены за­ряды. В какой паре цилиндрики оттолкнутся друг от друга?

1) №1
2) №2
3) №3

2. Слева висящие шарики наэлектризованы и взаимодейству­ют с правыми заряженными шариками так, как показано на рисунке. Какой из правых шаров заряжен положительно?

1) №1
2) №2
3) №3

3. Какое явление положено в основу действия электрометра? Что показывает этот физический прибор?

1) Взаимодействие электрических зарядов; есть ли на теле, которым касаются его стержня, заряд и какова его относи­тельная величина
2) На отталкивании друг от друга отрицательных зарядов; какого знака заряд находится на наэлектризованном теле
3) На отталкивании друг от друга положительных зарядов; относительную величину зарядов на телах

4. Незаряженных электроскопов касаются наэлектризованными так, как показано на рисунке, палочками. Как оказался заря­женным электроскоп №1? электроскоп №2?

1) №1 — отрицательно; №2 — положительно
2) №1 — положительно; №2 — отрицательно
3) №1 и №2 — отрицательно
4) №1 и №2 — положительно

5. Заряженных электроскопов (положение их листочков обозначено на рисунке пунктиром) касаются наэлектри­зованными палочками, в результате чего их листочки расположились иначе. Какой электроскоп был заряжен положи­тельно?

1) №1
2) №2
3) №3

6. Какое из этих веществ — проводник электричества?

1) Резина
2) Серебро
3) Шелк

7. В каких единицах измеряют электрический заряд?

1) Ваттах (Вт)
2) Джоулях (Дж)
3) Кулонах (Кл)

8. Какие частицы заключены в ядре атома?

1) Протоны и электроны
2) Протоны и нейтроны
3) Нейтроны и электроны

9. В атоме находится 19 частиц, причем протонов в его ядре 6. Сколько в нем электронов и нейтронов?

1) 6; 7
2) 7; 6
3) 6; 6

10. При наличии 8 протонов в ядре каждого из трех атомов одного и того же вещества оказалось, что в первом из них 9 электро­нов, во втором — 8, в третьем — 7 электронов. Какой атом стал отрицательным ионом?

1) Первый
2) Второй
3) Третий

11. Почему металлы — хорошие проводники электричества?

1) Потому что в узлах их кристаллических решеток расположены ионы
2) Потому что в них есть свободные электроны
3) Потому что в атомах металлов много электронов

12. При каком условии в проводнике возникает электрический ток?

1) Если в нем создано электрическое поле
2) Если в нем много заряженных частиц
3) Если частицы с электрическим зарядом приходят в движе­ние

13. За счет какой энергии положительные и отрицательные заря­ды разделяются в гальваническом элементе?

1) Механической
2) Внутренней
3) Энергии химических реакций

14. Что такое схема электрической цепи?

1) Рисунок, на котором условно обозначены электроприборы
2) Чертеж, на котором с помощью условных обозначений по­казаны соединения всех составных частей цепи
3) Чертеж, показывающий, как соединены между собой про­водниками потребители тока

15. Укажите, каким из этих условных обозначений изображают замыкающее цепь устройство.

1) №1
2) №2
3) №3

16. Электрическая цепь состоит из аккумулятора, звонка и ключа. Какая из представленных здесь схем ей соответствует?

1) №1
2) №2
3) №3

17. Движение каких заряженных частиц образует электрический ток в металлах? в проводящих растворах?

1) Электронов; ионов
2) Положительных ионов; отрицательных ионов
3) Ядер атомов; любых ионов

18. Чем вызван выбор в качестве направления электрического тока направление от положительного полюса источника тока к отрицательному, т.е. противоположное действительному пе­ремещению заряженных частиц (электронов) в обычных (ме­таллических) проводниках?

1) Историческим фактом: незнанием в то время, когда делал­ся этот выбор, природы электрического тока
2) Удобством нахождения этого направления
3) Неизвестно

19. Какое действие электрического тока не проявляется в ме­таллах?

1) Магнитное
2) Химическое
3) Тепловое

20. Какой прибор предназначен для обнаружения в цепи электри­ческого тока? Какое действие тока использовано в его устрой­стве?

1) Гальванический элемент; химическое
2) Электрометр; магнитное
3) Гальванометр; магнитное

Ответы на тест по физике Электрические заряды и электрический ток1 вариант
1-3
2-1
3-1
4-2
5-3
6-2
7-3
8-1
9-2
10-1
11-3
12-3
13-1
14-3
15-2
16-2
17-1
18-1
19-3
20-32 вариант
1-3
2-1
3-1
4-2
5-3
6-2
7-3
8-2
9-1
10-1
11-2
12-1
13-3
14-2
15-2
16-3
17-1
18-1
19-2
20-3

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

G=1/R

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Способность различных веществ проводить электрический ток

Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:

  • проводники;
  • полупроводники;
  • диэлектрики.

Рассмотрим каждый случай более подробно.

Проводники

К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.

Металлы как проводники электрического тока

Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.

Жидкие проводники электрического тока

Под жидкими проводниками понимают кислоты, растворы, электролиты, которые проводят электрический ток. Носителем заряда в данных случаях являются ионы. Необходимо отметить, распространенное убеждение что вода является проводником, в корне неверно. Когда Н2О находиться в чистом состоянии, свободные ионы в ней отсутствуют. Если при помещении в воду электродов наблюдается протекание электрического тока, то это говорит только о том, что в данном случае мы имеем дело с раствором какого-либо вещества.

Оцените статью:
Оставить комментарий