Постоянный электрический ток
Содержание
- 1 Кривые напряжения и тока в емкостном сопротивлении
- 2 Генерация и трансформация
- 3 Что такое переменный ток?
- 4 Когда 380, а когда 220?
- 5 1 закон Кирхгофа
- 6 Источники постоянного тока
- 7 Сети переменного тока
- 8 Действующее значение переменного синусоидального тока
- 9 Почему переменный ток используется чаще
- 10 Прямое включение диода. Прямой ток.
- 11 Периодический переменный ток
- 12 Увеличение потерь энергии при использовании постоянного тока
Кривые напряжения и тока в емкостном сопротивлении
В идеальной емкости ток опережает напряжение на 90°
Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:
Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:
где
— ток принужденного режима при di/dt=0
— ток свободного режима.
Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.
При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.
В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.
Генерация и трансформация
Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.
Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.
Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами
Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества
Любой трансформатор состоит из следующих элементов:
- первичной и вторичных обмоток;
- сердечника.
Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.
https://youtube.com/watch?v=7kIhqlZok8c
Что такое переменный ток?
Переменный ток периодически меняет не только силу, но и направление движения носителей заряда. График изменения силы тока может быть ступенчатым или остроконечным, но в основном приходится иметь дело с током синусоидальным, то есть график изменения его силы имеет вид синусоиды. Именно такой ток вырабатывают генераторы электростанций.
Причина синусоидальности состоит в том, что генерация электричества обеспечивается вращением источника магнитного поля (ротора) внутри обмотки (статора) и величина наведенной ЭДС, в соответствии с законом электромагнитной индукции, определяется формулой: Е = dФ * sin (wt), где dФ — изменение магнитного потока, w — угловая скорость вращения ротора, t — время. Произведение wt составляет угол поворота линии между полюсами относительно катушки обмотки статора, ЭДС которой рассматривается.
Силу переменного тока в данный момент времени называют мгновенным значением. Оно крайне неудобно для расчетов, поскольку постоянно меняется. Вместо мгновенного оперируют действующим значением — постоянным током, вызывающим в проводнике такое же выделение тепла, как и данный переменный.
Так же поступают с переменным напряжением. Говорят, к примеру, что в однофазной сети напряжение 220 В, тогда как на деле оно постоянно меняется от -311 В до +311 В. 220 В — это действующее значение. То есть сетевое переменное напряжение вызывает в проводнике выделение тепла той же мощности, какое вызывало бы постоянное напряжение в 220 В.
Когда 380, а когда 220?
Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) PEN проводник. В 99% квартир и 90% домов именно так и происходит.
Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…
Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.
Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.
Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.
Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.
Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.
Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.
Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.
Например, если дом питается от одной фазы, и потребляет мощность 15 кВт — это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.
Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).
И на вводе (перед счетчиком) стоят примерно такие “ящички”:
Трехфазный ввод. Вводной автомат D80 перед счетчиком.
Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.
Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?
1 закон Кирхгофа
В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.
Рис. 1. Схема параллельного соединения проводников.
Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.
Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.
Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.
Запишем первый закон Кирхгофа в комплексной форме:
Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда).
Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.
Рис. 2. i_1+i_4=i_2+i_3.
Рассмотрим применение 1 закона Кирхгофа на следующем примере:
- I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
- Тогда мы можем записать: I1 = I2 + I3.
- Аналогично для узла B: I3 = I4 + I5.
- Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
- Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
- Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
- А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
- Таким образом мы наглядно видим справедливость первого закона Кирхгофа.
Источники постоянного тока
Самыми первыми источниками постоянного тока являлись химические источники тока: гальванические элементы, затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может, пульсации отсутствуют.
Для получения постоянного тока в промышленных масштабах используют электрические машины — генераторы постоянного тока, а также солнечные батареи и в редких случаях термоэлектрогенераторы. К перспективным промышленным источникам постоянного тока относятся МГД-генераторы, которые в настоящее время пока не вышли из стадии экспериментальных.
В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания, которые подразделяются на классические («трансформаторные») и импульсные. В классическом блоке питания переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.
В современной радиоэлектронной аппаратуре получили распространение , которые имеют большее количество электронных компонентов по сравнению с классическим БП, но обладают существенно лучшими массо-габаритными показателями.
Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур. Электролитические конденсаторы могут иметь очень большую электрическую ёмкость (сотни и тысячи микрофарад и более). При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.
Ионисторы — гибрид конденсатора и химического источника тока, способны накапливать и отдавать довольно большое количество электрической энергии, например, чтобы электромобиль с ионисторами проехал некоторое расстояние.
Сети переменного тока
Четырёхпроводная линия электропередачи 220/380 В, такие ЛЭП распространены в районах одноэтажной застройки, в сельской местности.Два нижних провода — сеть проводного радиовещания.
Преобразование напряжения в электрических сетях
Схема разводки трёхфазной сети в многоквартирных жилых домах.
Производители электроэнергии (ГЭС, ТЭС, ТЭЦ, атомные и другие электростанции) генерируют переменный ток промышленной частоты (в России — 50 Гц), напряжением порядка 10 — 20 кВ.
Затем электрический ток поступает на трансформаторные подстанции, которые находятся рядом с электростанциями, где происходит повышение электрического напряжения.
Переменный ток высокого напряжения передаётся потребителям по линиям электропередачи (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП (см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери).
- Самая высоковольтная в мире ЛЭП Экибастуз-Кокчетав работала под напряжением 1 миллион 150 тысяч вольт.
На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.
В подавляющем большинстве случаев по линиям электропередачи передаётся трёхфазный ток, однако существуют линии электропередачи постоянного тока, например высоковольтная линия постоянного тока Волгоград-Донбасс, высоковольтная линия постоянного тока Экибастуз-Центр, материковая Южная Корея — остров Чеджудо и другие. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность, передавать электроэнергию между энергосистемами, использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией (см. вставка постоянного тока Выборг — Финляндия).
В России в электрических сетях общего назначения используется трёхфазный ток с межфазным напряжением 380 Вольт.
Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.
К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередачи (воздушные или кабельные ЛЭП) с межфазным напряжением 380 вольт (с 2003 года 400 Вольт по ГОСТ 29322-2014). В отдельную квартиру (или в сельский дом) подводится фазовый провод и нулевой провод, электрическое напряжение между «фазой» и «нулём» составляет 220 вольт (с 2003 года 230 Вольт по ГОСТ 29322-2014). Определить, где какой провод можно с помощью индикатора фазы.
- Например, в первую квартиру подводится фаза «A», во вторую квартиру — фаза «B», в третью квартиру — фаза «C» и так далее…
Действующее значение переменного синусоидального тока
Если все положительные и отрицательные мгновенные значения переменного синусоидального тока сложить, то их сумма будет равна нулю. Но если алгебраическая сумма всех мгновенных значений за период равна нулю, то и среднее значение этого тока за период также равно нулю: Iavg(T)={\displaystyle I_{avg}(T)=0}.
- Среднее значение синусоидального тока за период не может служить для измерения этого тока.
Чтобы судить о величине переменного синусоидального тока, переменный ток сравнивают с постоянным током по их тепловому действию.
- Два тока, один из которых синусоидальный, а другой постоянный, эквивалентны по тепловому действию, если они, протекая по одинаковым сопротивлениям, за одинаковые отрезки времени выделяют одинаковое количество тепла.
- Действующее значение переменного синусоидального тока численно равно току постоянному, эквивалентному данному синусоидальному току, то есть выделяющему порознь с ним в одинаковом сопротивлении за одинаковый отрезок времени одинаковое количество тепла.
Найдено экспериментально, а затем подтверждено теоретически, что величина действующего значения переменного синусоидального тока находится в строго определённой зависимости от амплитуды этого тока: I=Im2{\displaystyle I={\frac {I_{m}}{\sqrt {2}}}}, то есть действующее значение I{\displaystyle I} переменного синусоидального тока в 2{\displaystyle {\sqrt {2}}} раз меньше амплитуды этого тока.
Амперметр электромагнитной или электродинамической системы, включенный в цепь переменного синусоидального тока, показывает действующее значение тока.
Аналогично действующему значению переменного синусоидального тока можно говорить о действующем значении переменной синусоидальной электродвижущей силы или переменного синусоидального напряжения.
- Действующее значение напряжения в 2{\displaystyle {\sqrt {2}}} меньше его амплитуды: U=Um2{\displaystyle U={\frac {U_{m}}{\sqrt {2}}}} или Um=2×U{\displaystyle U_{m}={\sqrt {2}}\times U}.
Вольтметр электромагнитной или электродинамической системы, включенный в сеть переменного синусоидального тока, показывает действующее значение синусоидального напряжения.
- Например, в электрической розетке электрическое напряжение ∼220 B{\displaystyle \thicksim {220}~B}, так как это действующее значение, амплитудное напряжение будет 220×1,41=311{\displaystyle {220}\times {1,41}={311}} Вольт.
Данные формулы справедливы только для синусоидального тока, если импульсы будут треугольной, пилообразной, прямоугольной или иной формы — требуется другая методика вычисления.
Методом математического анализа можно определить среднее значение переменного синусоидального тока за половину периода, например за положительную полуволну синусоиды.
Среднее значение переменного синусоидального тока за половину периода равно IIavg(T2)=2πIm=,637Im{\displaystyle {\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={{\frac {2}{\pi }}I_{m}}={0,637}\;I_{m}}.
Также можно определить отношение k{\displaystyle k} действующего значения тока к среднему за половину периода (положительную полуволну). Это отношение для синусоидального тока равно:
k=IIavg(T2)=Im22πIm=π22=1,11{\displaystyle k={\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={\frac {\frac {I_{m}}{\sqrt {2}}}{{\frac {2}{\pi }}I_{m}}}={\frac {\pi }{2{\sqrt {2}}}}={1,11}}.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.
Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.
Прямое включение диода. Прямой ток.
Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.
При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.
Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.
Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.
Периодический переменный ток
Развёрнутая диаграмма периодического переменного тока
Периодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.
На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.
Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.
Величина, обратная периоду, называется частотой переменного тока:
- f=1T{\displaystyle f={\frac {1}{T}}}, где
- f{\displaystyle f} — частота переменного тока;
- T{\displaystyle T} — период переменного тока.
Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:
- f=1T1sec{\displaystyle f={\frac {1}{T}}\left}, то есть размерность частоты переменного тока выражается в 1/с..
Частота переменного тока численно равна числу периодов в секунду.
За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).
Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).
Стандарты частоты
В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. ).
Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. ).
В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.
- Число оборотов ротора n1min{\displaystyle n\left} синхронного электродвигателя определяется по формуле:
n=60fp{\displaystyle n={\frac {60f}{p}}}, где
f{\displaystyle f} — частота переменного тока;
p{\displaystyle p} — число пар полюсов.
- Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, рассчитанный на 400 герц, разовьёт 24 000 оборотов в минуту. Число оборотов ротора асинхронного электродвигателя меньше, чем ротора синхронного двигателя и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.
В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.
Увеличение потерь энергии при использовании постоянного тока
Наиболее убедительным аргументом в пользу этого изменения является эффективность. Когда угольные и атомные электростанции подают напряжение в сеть с переменным током, который затем потребляется непосредственно лампочками и пылесосами, его эффективность составляет около 65 %. Другими словами, около трети электрической энергии теряется, например, за счет потерь тепла.
Сегодня ситуация заметно усугубилась. В результате использования фотогальванических систем и электростанций, наряду с увеличением использования батарей, все больше и больше электроэнергии подается в сеть, которая сначала должна быть преобразована из постоянного тока в переменный, что приводит к ее потерям. Потребители также страдают. Нагревающиеся адаптеры являются свидетельством потерь энергии. Это означает, что эффективность нашей энергосети составляет всего лишь 56 %. Следовательно, необходимо фундаментальное переосмысление этих процессов.
Альтернативой является использование технологий постоянного тока (DC), таких как высоковольтные линии передачи постоянного тока (HVDC) для подачи электроэнергии на большие расстояния, вместе с низковольтными сетями постоянного тока в домашних хозяйствах и промышленности. Они могут быть напрямую подключены к электронным устройствам или промышленным приводам без необходимости использования адаптера или трансформатора. При использовании фотогальванической системы на крыше жилого дома и электромобиля в гараже эффективность будет непревзойденной. Электрическая сеть, систематически настроенная на постоянный ток, обеспечит общую эффективность в 90 %. Если эффективность будет всего на 10 % выше, тогда две крупнейшие угольные электростанции в Германии могут быть отключены. Это позволит сэкономить 63 миллиона тонн CO2, или 12 % от общего объема выбросов электростанций в Германии. Для оксидов азота этот показатель еще выше — 29 %.