Работа стабилизатора на стабилитроне

Содержание

Литература

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Как выбрать транзистор для стабилизатора?

Основные параметры для транзистора в стабилизаторе напряжения: максимальный ток коллектора, максимальное напряжение «коллектор-эмитер» и максимальная мощность. Все эти параметры всегда имеются в справочниках. 1. При выборе транзистора необходимо учитывать, что паспортный (по справочнику) максимальный ток коллектора должен быть не менее, чем в полтора раза больше максимального тока нагрузки, который вы хотите получить на выходе стабилизатора. Это делается для того, чтобы обеспечить запас по току нагрузки при случайных кратковременных бросках нагрузки (например короткого замыкания). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

2. Максимальное напряжение «коллектор-эмитер» характеризует способность транзистора выдерживать определённое напряжение между коллектором и эмитером в закрытом состоянии. В нашем случае этот параметр должен также превышать не менее, чем в полтора раза напряжение подводимое к стабилизатору от цепи «трансформатор-выпрямитель-фильтр питания» вашего блока стабилизированного питания.

3. Паспортная выходная мощность транзистора должна обеспечивать работу транзистора в режиме «полуоткрытого» состояния. Всё напряжение, которое вырабатывается цепочкой «трансформатор-выпрямительный мост-фильтр питания» делится на две нагрузки: собственно нагрузка вашего блока стабилизированного питания и сопротивление коллекторно-эмитерного перехода транзистора. По обоим нагрузкам течёт один и тот же ток, поскольку они подключены последовательно, а вот напряжение делится. Из этого следует, что необходимо выбрать такой транзистор, который при заданном токе нагрузки способен выдерживать разницу между напряжением, вырабатываемым цепочкой «трансформатор-выпрямительный мост-фильтр питания» и выходным напряжением стабилизатора. Мощность вычисляется как произведение напряжения на ток (из учебника физики средней школы).

Например: На выходе цепи «трансформатор-выпрямительный мост-фильтр питания» (а значит на входе стабилизатора напряжения) напряжение равно 18 вольт. Нам необходимо получить выходное стабилизированное напряжение 12 вольт, при токе нагрузки 4 ампера.

Находим минимальное значение необходимого паспортного тока коллектора (Iк max):

4 * 1,5 = 6 ампер

Определяем минимальное значение необходимого напряжения «коллектор-эмитер» (Uкэ):

18 * 1,5 = 27 вольт

Находим среднее напряжение, которое в рабочем режиме будет «падать» на переходе «коллектор-эмитер», и тем самым поглощаться транзистором:

18 — 12 = 6 вольт

Определяем потребную номинальную мощность транзистора:

6 * 4 = 24 ватт

При выборе типа транзистора необходимо учитывать, что паспортная (по справочнику) максимальная мощность транзистора должна быть не менее, чем в два — три раза больше номинальной мощности падающей на транзисторе. Это делается для того, чтобы обеспечить запас по мощности при различных бросках тока нагрузки (а следовательно и изменения падающей мощности). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

В нашем случае необходимо выбрать транзистор с паспортной мощностью (Рк) не менее:

24 * 2 = 48 ватт

Выбираете любой транзистор, удовлетворяющий этим условиям, с учётом, что чем паспортные параметры будут намного больше расчётных, тем меньше по размерам потребуется радиатор охлаждения (а может и вообще не нужен будет). Но при чрезмерном превышении этих параметров учитывайте тот факт, что чем больше выходная мощность транзистора, тем меньше его коэффициент передачи (h21), а это ухудшает коэффициент стабилизации в источнике питания.

В следующей статье мы рассмотрим компенсационный стабилизатор напряжения непрерывного действия. В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем «эмиттерный повторитель», кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.

Плюсы и минусы электромеханического стабилизатора напряжения

ПЛЮСЫ

— Невысокая стоимость

— Высокая точность стабилизации

Благодаря тому, что механический стабилизатор не имеет фиксированных отводов от автотрансформатора, а может сам формировать нужное количество витков обмотки и соответственно достаточно гибко изменять коэффициент трансформации, точность стабилизации получатся очень высокой.

— Плавная стабилизация

Так как изменение положения подвижного контакта производится с помощью сервопривода, который плавно перемещает его по обмотке регулируемого автотрансформатора — не происходит резких скачков напряжения и даже кратковременного обрыва контакта, чего очень боятся чувствительные электронные компоненты электрооборудования.

— Устойчивость к кратковременным перегрузкам

Конструкция механического стабилизатора позволяет ему кратковременно выдерживать скачки напряжения в сети, даже если оно увеличивается в два раза относительно номинального.

— Устойчив к помехам в напряжении, частоте и форме тока

Использование автотрансформатора, как основного элемента стабилизации напряжения, позволяет не бояться изменений частоты и формы тока.

— Компактность

Минимальное количество используемых в механическом стабилизаторе компонентов, позволяет сделать его достаточно компактным. Его размер формируется в большей степени из размера регулируемого автотрансформатора.

— Высокий коэффициент полезного действия (КПД)

На некоторых форумах и информационых ресурсах, рассказывающих о электромеханических стабилизаторах, встречается мнение, что они имеют низкий КПД, но это не так. Практически все виды стабилизаторов в основе которых лежит автотрансформатор: релейные, механические, теристорные, симисторные, гибридные, имеют достаточно высокий КПД, 94-98%.

МИНУСЫ

— Наличие движущихся деталей

Самым слабым узлом электромеханического стабилизатора является именно механизм перемещения контакта по обмотке, он очень чувствителен к загрязнениям и пыли, да и просто подвижные детали имеют наибольший естественный износ при работе. Данный недостаток автоматически порождает следующий.

— Необходимости регулярного технического обслуживания

Наличие движущихся деталей вынуждает периодически обслуживать сервоприводные стабилизаторы — чистить их, менять щетки и т.д. Отнести данные стабилизаторы к устройствам — купил, установил и забыл нельзя, они периодически требуют внимания к себе.

— Шумность

Передвижение щеток и работа сервопривода создают определенный шум, он не такой навязчивый и громкий как, например, щелчки при переключении релейного стабилизатора, но всё же ощутимый и создаёт некоторый дискомфорт, когда стабилизатор находится с вами в одной комнате.

— Скорость реагирования

Одним из самых значимых недостатков механических стабилизаторов является низкая скорость реагирования на изменения напряжение. Это и неудивительно, ведь сервопривод не может моментально передвинуть токосниматель по обмотке, на это ему требуется определенное время, у многих моделей изменение напряжения происходит всего по 10-15 вольт в секунду. Таким образом, если произойдет резкое падение входного напряжение сразу на 60 вольт, стабилизатор нормализуют его лишь через 4-6 секунд, всё это время электрооборудование будет работать при низком напряжении.

— Ограниченный диапазон рабочих температур

В среднем, рабочий диапазон сервоприводных стабилизаторов лежит в пределе -5 до +40 градусов. Таким образом количество мест, где возможно их применение или установка  значительно ограничено.

— Боязнь пыли

Наличие подвижного токоснимателя и электродвигателя делают механический стабилизатор очень чувствительным к попаданию внутри него пыли, которая значительно увеличивает вероятность поломки. Из-за этого, например, нельзя устанавливать сервоприводные стабилизаторы на производстве, в цеху.

Как определить мощность нагрузки?

Мощность нагрузки на стабилизатор равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это несложно: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.

Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.

Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д

Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, то есть тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем и т.д

Принцип действия релейного стабилизатора напряжения

В первую очередь, в стабилизаторе замеряется входящее напряжение, далее, в зависимости от полученных результатов, с платы управления посылается сигнал на открытие того или иного реле, соответственно электрический ток с одной из отпаек автотрансформатора, уменьшенный или увеличенный до нужного значения, поступает на выводы стабилизатора, к потребителю.

В качестве примера работы стабилизатора, давайте примем, что каждый отвод автотрансформатора даёт +/- 15 Вольт изменения напряжения, работает это следующим образом:

— Если напряжение в сети 220В – оно сразу передаётся к потребителю, коэффициент трансформации при этом 1. Соответственно в пределах от 205В до 235В (220В +/-15В), напряжение на выход стабилизатора, будет передаваться без изменений.

— Как только входящее напряжение опускается до значения, меньшего чем 205 Вольт, задействуется первая вторичная обмотка автотрансформатора, с коэффициентом трансформации 1,075, тем самым на выходе снова получается 220 В (205*1,075). В этот момент отвечающее за этот отвод автотрансформатора рале замыкается, пуская ток на выходные контакты стабилизатора, а все другие размыкаются.

Далее, пока напряжение не упадет еще на 15В т.е. до 190В (205В-15В), будет продолжать действовать эта вторичная обмотка с тем же коэффициентом трансформации, таким образом, если в сети напряжение упадет до 196В (граница переключения на следующий режим), на выходе получается 211В (196*1,075).

— Когда входящее напряжение опускается ниже 190В, срабатывает очередное реле, а предыдущее размыкается, тем самым включается следующая вторичная обмотка автоматического трансформатора, с коэффициентом трансформации уже 1,15 и напряжение на выходе опять становится 220В (196*1.15) и так далее, каждые 15В переключается обмотка до, допустим, 145В – после чего стабилизатор уходит в защиту.

— Если же наоборот, напряжение в сети возрастает выше 235В, с помощью соответствующего реле задействуется понижающая вторичная обмотка, с коэффициентом трансформации 0,94 и опять же напряжение в сети выравнивается до требуемых 220В (235*0,94).

Думаю, теперь, принцип действия релейного стабилизатора вам понятен, теперь давайте рассмотрим какие у стабилизатора этого типа сильные и слабые стороны, в каких сферах его лучше всего применять.

Основные параметры стабилитрона

Стабилизатор тока на транзисторе

Для создания рабочей схемы применяют обратное включение полупроводникового прибора. На анод подают «минус» источника питания. На катод – «плюс».


ВАХ стабилитрона

С помощью измерительной аппаратуры можно составить по точкам распределение электрических величин. На рисунке отмечены основные характеристики стабилитрона, которые нужно учитывать при расчете стабилизатора напряжения. Показаны уровни, определяющие:

  • начало пробоя;
  • рабочий режим (Uст, Iст);
  • максимально допустимое значение (Uобр, Imax).

Серийные приборы рассматриваемой категории способны стабилизировать напряжение в диапазоне от 0,6 до 210 V. Допустимый ток (Imax) ограничен мощностью рассеивания. Для улучшения этого параметра применяют монтаж на радиаторе через слой термопасты, эффективную пассивную и принудительную вентиляцию. Отмеченное на графике значение Imin соответствует уровню сохранения работоспособности перехода в обычном режиме. Для стабилизации используют участок ΔU, который характеризуется незначительным изменением напряжения при достаточно большом увеличении силы тока в обратном направлении (ΔI).

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора?RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении.
А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители!

Чтобы получить минимальный уровень гармоник в выпрямленном напряжении я экспериментировал с одно и двухзвенными RC-фильтрами, установленными после первого фильтрующего конденсатора.

Как и ожидалось, добавление одного звена даёт наибольший прирост в качестве звучания усилителя.
Второе звено также даёт заметный вклад. Дальнейшее увеличение количества звеньев на звук существенно не влияет, а вот на массо-габаритные показатели очень.

Результаты измерений:

Как видно, существенно уменьшают не только верхние гармоники, но и основные пульсации также существенно затухают. Что и требовалось. К сожалению, моё оборудование не позволяет точно измерить уровень фона в присутствии сигнала. Кроме основой гармоники уровень других гармоник составил ниже 10 мВ.

Дополнительное звено в фильтре может снизить ещё на 20дБ уровень всех гармоник выше 200Гц. Но они и так уже на уровне шума стабилизатора.
Упрощенное моделирование стабилизатора на мощном FET-транзисторе показало уровень подавления низкочастотных составляющих на уровне 100дБ и 40 дБ для гармоник 100 кГц и выше.

Такие впечатляющие цифры вряд ли будут достигнуты на практике из-за паразитных ёмкостей монтажа, наводок со стороны сети и прочих негативных факторов.

Поэтому я решил считать нормальными результаты: подавление 60дБ на нижних частотах и 20дБ на высоких. Получается, что пульсации частотой 50Гц и амплитудой 100 мВ будут ослаблены до уровня 0,1мВ

Подавление ВЧ-гармоник не столь важно, так как они очень хорошо ослабляются RC-фильтрами

Высоковольтный стабилизатор напряжения

Так как максимальное выходное напряжение микросхемы TL431 составляет всего 30В, то для получения больших значений выходного напряжения стабилизатора используется полевой транзистор, включенный как умножитель. Его коэффициент усиления равен отношению суммы резисторов 330кОм и 270 кОм к резистору в 33кОм. При указанных номиналах усиление равно 15, т.е. максимальное выходное напряжение схемы составляет порядка 450В.

Источник тока на транзисторах MJE350 питает источник образцового напряжения током в 5мА, значение которого устанавливается резистором 150R.
В остальном работа схемы аналогична предыдущей.

Следует обратить внимание на качество конденсаторов. Они должны быть низкоимпедансными и быстрыми

К примеру, плёночные конденсаторы фирмы WIMA типа FKP1 отвечают всем этим требованиям.

Кстати, так как схема не обеспечивает плавную подачу анодного напряжения (или задержку включения) до прогрева ламп, для решения это проблемы можно использовать модуль, описанный здесь.

Основные характеристики релейного стабилизатора

Стабилизаторы релейного типа подбираются по следующим параметрам:

  1. Пиковая мощность — суммарная активная (кВт) и реактивная (кВА) мощность потребителей;
  2. Активная нагрузка — полезная мощность, потребляемая электрооборудованием, которое преобразовывает нагрузку в энергию другого типа – механическую, тепловую и т.д;
  3. Допустимые отклонения входного напряжения и время срабатывания устройства — чем значительнее всплески или проседания входного тока, тем быстрее должен срабатывать стабилизатор;
  4. Пороги защиты от всплесков и проседаний входного тока — при преодолении пороговых значений параметров тока на входе система защиты стабилизатора на несколько секунд отключает нагрузку, после чего возобновляет подачу тока при условии нормализации входного напряжения;
  5. Наличие «байпаса» — режим «байпас» или «обход» позволяет подачу напряжения напрямую на выход стабилизатора в обход его схемы, что упрощает сервисное обслуживание устройства, которое в этом случае выполняется без отключения потребителей;
  6. Наличие тепловой защиты — при нагреве трансформатора до критической температуры система отключает питание стабилизатора на время, необходимое для остывания трансформаторных обмоток;
  7. Диапазон и временный интервал защиты от всплесков и проседаний выходного напряжения — если отклонения параметров выходного тока превышают допустимые пределы, срабатывает защитное реле, которое отключает питание нагрузки.

Расчет мощности стабилизатора напряжения

Сделаем расчет мощности стабилизатора напряжения на примере.

Пример: если на дрели написано «700 Вт» и » cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи. Многие приборы в момент пуска могут потреблять энергии в несколько раз больше, чем их номинальная мощность. К таким приборам относятся все устройства, содержащие двигатель.

Например, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Особенности работы

Работа этого устройства считается достаточно простой. Это устройство способно регулировать ток ступенчато. В результате этого при подключении обмотки ток будет увеличиваться или уменьшаться на определенную величину. Иногда их уровень может не соответствовать норме. Подобное последовательное срабатывание может вызывать дополнительные скачки напряжения.

Если детально изучить его работу, тогда можно будет понять, что реле быстро переключает обмотки. В результате этого скачки напряжения считаются незначительными. Их заметность может возникнуть в результате скачков входного тока. Если вы используете высокоточное оборудование, тогда техника может выйти из строя. Постоянная подача тока будет практически невозможной.

Если вы посмотрите напряжение и дисплей будет показывать 220 Вольт, тогда возможно вы попали на плохого производителя. Производители могут специально запрограммировать устройство, чтобы оно постоянно показывало 220 Вольт.

Обычно для стабилизации напряжения прибору необходимо тратить до 0,15 секунд. Релейные стабилизаторы также могут прекращать подачу выходного тока. Это может произойти в том случае, когда на входе появляется минимально допустимый ток. Если напряжение стабилизируется, тогда стабилизатор возобновит свою работу. Восстановление тока происходит в течение 0.6 секунд. У нас вы можете прочесть про защиту электропроводки  помощью стабилизатора.

Как подобрать модель стабилизатора?

Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.

Обратите внимание!

Выбор стабилизатора со значением мощности, ближайшим к энергопотреблению нагрузки в меньшую сторону либо снизит заложенный ранее запас по мощности, либо, в худшем случае, приведёт к приобретению стабилизатора с несоответствующими нагрузке выходными параметрами.

Обратите внимание!

Для трехфазного стабилизатора нагрузка на каждую фазу должна составлять не более 1/3 от номинальной. Например, трехфазный стабилизатор с номиналом 6000 ВА запитает трехфазную нагрузку в 4200 ВА (мощность потребляемая от одной фазы составит 1400 ВА), но подключение к отдельной фазе этого стабилизатора нагрузки в 2500 ВА вызовет перегрузку, так как максимально допустимое значение по одной фазе составляет: 6000/3=2000 ВА.

Основные характеристики

Перед тем как прибрести стабилизатор, стоит разобраться в его параметрах

Важно обладать информацией о подключении и требованиям по нагрузке

Характеристики устройства.

К основным характеристикам относят:

  • Мощность.
  • Точность стабилизации.
  • Фазность.
  • Быстроту действия.
  • Надежность.
  • Способ установки.
  • Габариты.
  • Устройства индикации.
  • Защита от помех.

Точность стабилизации

Параметр указывает погрешность работы устройства в процентах, в зависимости от выходного напряжения и отклонения от номинала. В современных стабилизаторах обеспечивается точность 10 %, этот показатель зависит от конструктивного исполнения.

Самыми точными считаются инверторные модели — 2%.

У иных конструкций, используемых в бытовых целях, точность 7%. Но если устройство применяется в иных целях, к примеру, стиральные агрегаты, кондиционеры, видеоаппаратура, так как от качества питания на входе зависимы изображение и звук.

Скорость реакции на изменения параметров входного тока

Характеристика, измеряемая в миллисекундах, определяющая время для нейтрализации скачка напряжения и подачи входящей нагрузки с номинальными показателями.

Это важный показатель, так как снижается вероятность повреждения оборудования, подключенного к прибору.

Обратите внимание! Максимальный параметр быстродействия отмечается у стабилизаторов инверторного типа

Защищенность от помех

Для обеспечения защиты от помех в стабилизаторах предусматриваются сетевые фильтры. Внутри последнего должна быть плата с дросселями, схемой, конденсаторами, варисторами и заземлением.

Срок эксплуатации

У механических стабилизаторов срок службы небольшой. Функционирование прибора осуществляется за счет подвижного контакта, перемещаемого по катушке и регулирующего напряжение на выходе. Действие осуществляется за счет электропривода. По истечении времени обмотка и контакт повреждаются, так как через подвижной элемент передается мощность, а это сказывается на сроке службы прибора. Нагревание, искрение и выход из строя провоцирует это явление.

Срок службы устройств релейного типа более долгий. Обмотки коммутируются в группы реле. От качества последних зависит продолжительность эксплуатации. Ресурс работы заложен для каждого реле индивидуально.

Большой срок службы имеют тиристорные или симисторные устройства, так как подгорание контактов исключено. Обмотки коммутируются посредством силовых ключей электронного типа. Продолжительность службы зависима от качества комплектующих, электрической принципиальной схемы стабилизатора напряжения и монтажа.

Стоимость

Ориентировочная стоимость стабилизаторов:

  • Сервопроводных. Около 15000 рублей
  • Релейного типа. Около 6000 рублей.
  • Электронных. Около 10000 рублей.
  • Инверторных. Около 7000 рублей

Сборка устройства

Информация актуальна на декабрь 2019 года.

Расчёт стабилизатора постоянного напряжения компенсационного типа и практические советы конструкторам

Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.

Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.

1

Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n

2. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.

3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.

4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.

5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.

6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.

Использование интегральных стабилизаторов напряжения в качестве источников опорного напряжения

Интегральные стабилизаторы напряжения, выпускаемые промышленностью в настоящее время, имеет широкую номенклатуру изделий, и характеризуются высокими техническими параметрами. Так, например, широко применяемая микросхема стабилизатора напряжений серии КР142ЕН выпускаются на различные стабилизируемые напряжения от 5 до 30 В, имеют коэффициент нестабильности по напряжения не менее 0,1 %/В, а коэффициент сглаживания пульсаций не менее 30 дБ. Поэтому они наилучшим образом подходят в качестве источников опорного напряжения в мощных линейных стабилизаторах напряжения. Схема использования их в качестве опорных источников напряжения показана ниже

Согласно технической документации микросхемы типа КР142ЕНхх на вход и выход необходимо включить конденсаторы: С1 ≥ 2,2 мкФ, С2 ≥ 1 мкФ.

При использовании интегральных стабилизаторов достаточно просто реализовать регулируемый стабилизатор напряжения, для этого достаточно поставить на выходе источника опорного напряжения переменный резистор, со среднего отвода которого снимать напряжение на операционный усилитель

Вышеописанные схемы стабилизаторов напряжения на ОУ позволяют получить очень хорошие показатели стабильности выходного напряжения. Однако ОУ не могут обеспечить достаточно большой выходной ток (обычно несколько десятков мА), поэтому выходная мощность ограничена долями ваттами, в зависимости от выходного напряжения.

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора.

Оцените статью:
Оставить комментарий