Ion (ион)

Механизм образования ионов

Химические элементы в составе соединений редко являются электрически нейтральными. То есть они почти никогда не находятся в состоянии атомов. В образовании ковалентной связи, которая считается самой распространенной, атомы также имеют некий заряд, а электронная плотность смещается вдоль связей внутри молекулы. Однако заряд иона здесь не формируется, потому как энергия ковалентной связи меньше, нежели энергия ионизации. Потому, несмотря на различную электроотрицательность, одни атомы не могут полностью притянуть электроны внешнего слоя других.

В ионных реакциях, где разница электроотрицательности между атомами достаточно большая, один атом может забирать электроны внешнего слоя у другого атома. Тогда созданная связь сильно поляризуется и разрывается. Затраченная на это энергия, которая создает заряд иона, называется энергией ионизации. Для каждого атома она различная и указывается в стандартных таблицах.

Ионизация возможна только в том случае, когда атом или группа атомов способен либо отдавать электроны, либо акцептировать их. Чаще всего это наблюдается в растворе и кристаллах солей. В кристаллической решетке также присутствуют почти неподвижные заряженные частицы, лишенные кинетической энергии. А поскольку в кристалле нет возможности для передвижения, то реакция ионов протекают чаще всего в растворах.

Значение слова ИОН. Что такое ИОН?

ИО́Н, -а, м. Физ. Электрически заряженная частица (атом или группа атомов).

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Ио́н (др.-греч. ἰόν — идущее) — частица, в которой общее число протонов не эквивалентно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов имеет отрицательный заряд и называется анионом.
В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвёздном пространстве).

ИО’Н, а, м. (физ.). Атом или молекула, содержащие в себе электрический заряд.

«Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Я стал чуточку лучше понимать мир эмоций.

Вопрос: последить — это что-то нейтральное, положительное или отрицательное?

  • химия
  • физика
  • частица
  • атом
  • молекула
  • (ещё…)

джон вакуум радиация плазма спектр … (все синонимы к слову ИОН)

Предложения со словом «ион»:

  • Помимо кровоизлияний, высокая концентрация ионов железа может быть следствием процесса деградации крови в кавернах мальформации (96, 192, 227, 291).
  • Оно имеет высокий водородный показатель на уровне 11 — 12 (мера активности ионов водорода в растворе), обозначаемый аббревиатурой PH.
  • Почему же отрицательные ионы так благоприятствуют здоровью? Выяснено, что они оказывают на настроение людей положительное воздействие.
  • (все предложения)

заряженный отрицательный положительный … (все определения)

Цитаты со словом «ион»:

  • Мы не можем доверять никому, даже собственной семье. (1972 год, генералу Иону Пачепе)
  • — Исследования ионных ракетных двигателей ведёт лаборатория электроники в г. Стэнфорд (Electronics Laboratory Stanford University). Основное препятствие в работе — нестабильность ионной струи на выходе из двигателя.

    Чтобы двигатель, теряя положительный заряд, не заряжался отрицательно, поток ионов на выходе нужно нейтрализовать электронами. Величина вибраций струи пока не поддаётся расчётам, а от вибрации нарушается рабочий процесс в двигателе.

    Всё упирается в математику, как считает д-р Дерфлер (Derfler, Heinrich): «Более исчерпывающий анализ нелинейных уравнений существенно повлияет на определение возможности применения ионных ракет в космическом пространстве». Вот ещё часть статьи, возможно не совсем точно переведённая: «Необходимо добиться сохранения высокого к.п.д.

    двигателя при увеличении и уменьшении напряжения на электродах, уменьшить потери тепла на излучение у раскалённого эмиттера, избирательно искривить траекторию пучка ионов внутри ионного двигателя. Ионная пушка должна быть спроектирована и изготовлена с учётом этих требований. Однако, несмотря на облегчение эксперимента, спроектировать ионную пушку сложнее, чем электронную.

    Согласно требованиям уже отработаны отдельные вопросы проблемы и найдены оптимальные характеристики системы. В конечном счёте, ионный эмиттер из цезия должен быть отработан. Важная особенность течения рабочего процесса в ионном двигателе – едва ли не абсолютная ионная оптика и как можно меньшие потери тепла за счёт радиации в стенки камеры.

    Ещё две трудности проектирования ионной оптики – в низкой конвергенции потока ионов и в регулировании параметров на выходе при нейтрализации потока. …Регулирование необходимых параметров соответственно этим требованиям может в свою очередь определить новую программу и эффект ионной оптики.

    При чередующейся работе над двумя программами может быть выяснена реальность и эффективность ионной пушки». Лев Владимирович Баньковский (1938–2011) — российский философ

  • Действие радия на кожу изучено доктором Доло в больнице Сен-Луи. С этой точки зрения радий даёт ободряющие результаты: эпидерма, частично разрушенная действием радия, преобразуется в здоровую. Мария Склодовская-Кюри (1867–1934)
  • (все цитаты)

Применение процесса

Ряд методов используется для получения ионов для масс-спектрометрии или других применений. Наиболее распространенным из этих методов является электронный удар, производимый бомбардировкой образца газа потоком быстро движущихся электронов. Хотя легче, чем некоторые другие методы, этот не особенно эффективен, потому что необходимо больше энергии для удаления электрона. Электронная пушка, обычно нагретая вольфрамовая проволока, производит огромное количество электронов, которые затем выстреливаются в газ. Поскольку электроны настолько малы, это скорее похоже на использование скорострельного пулемета для уничтожения комаров: почти неизбежно, что некоторые из комаров будут поражены, но много раундов придется стрелять в воздух, не поражая ни одного насекомого.

Другим процессом ионизации является  ионизация полем, при которой она производится путем воздействия на молекулу очень интенсивного электрического поля. Ионизация поля происходит в ежедневной жизни, когда статическое электричество образует малую искру. Искра фактически поток электронов.

В прикладных лабораториях профессионально известно что такое ионизация и используются точные приборы. Этот процесс гораздо более эффективен, чем электронным ударом и требуется гораздо меньше энергии по отношению к энергии, необходимой для удаления электронов. Технологические достижения медицины широко применяют этот процесс.

Химическая ионизация использует метод подобный ионизации удара электрона, за исключением того, что вместо электронов, луч используется для того чтобы бомбардировать и ионизировать образец. Ионы используемые в этой бомбардировке типично малые молекулы, как в метане, пропане или аммиаке. Тем не менее, молекулярный ион гораздо больше чем электрон, и эти столкновения высокореактивны.

Многие масс-спектрометры используют источник, способный как к электронному удару, так и к химической ионизации.

Ионизация может  обеспечиваться электромагнитным излучением, длина волны которого короче длины волн видимого света, т. е. ультрафиолетовым светом, рентгеновскими лучами или гамма-лучами.

Также существует фотоионизация малых молекул, как то кислород (O2). Фотоионизация происходит в верхних слоях атмосферы, где ультрафиолетовое излучение от Солнца вызывает ионизацию кислорода и азота (N2) в их молекулярных формах.

Вот, что такое ионизация в популярном виде.

Ионизация

Основная статья: Ионизация

Атомы и молекулы могут превращаться в положительно заряженные ионы в результате потери одного или нескольких электронов. Отрыв электрона от атома или молекулы требует затраты энергии, называемой энергией ионизации.

Положительно заряженные ионы также образуются при присоединении протона (положительно заряженного ядра атома водорода). Примером является молекулярный ион водорода, ион аммония, ониевые соединения.

Отрицательно заряженные ионы образуются в результате присоединения электрона к атому или молекуле. Присоединение электрона сопровождается выделением энергии.

Положительный ион водорода (H+) получается при ионизации атома водорода, в физике он имеет название протон и обозначается символом p (или p+); протоны вместе с нейтронами образуют все атомные ядра. Энергия ионизации в данном процессе имеет значение 13,595 эВ.

Для атома гелия энергия ионизации составляет 24,581 эВ и 54,403 эВ и соответствует отрыву первого и второго электронов. Получаемый ион гелия (He2+) в физике имеет название альфа-частица. Выброс альфа-частиц наблюдается при радиоактивном распаде некоторых атомных ядер, например 88Ra226.

Энергия отрыва первого электрона атома имеет явно выраженный периодический характер в зависимости от порядкового номера элемента.

Зависимость энергии ионизации атомов от порядкового номера элемента

В связи с низкими значениями энергии ионизации щелочных металлов, их атомы легко теряют свои внешние электроны под действием света. Работа отрыва электрона производится в данном случае за счёт энергии поглощаемых металлом квантов света.

Какой заряд будет у атома?

Теоретически возможно отобрать все электроны у атома, но это возможно только в лабораторных условиях и за
пределами лаборатории атомы в таком состоянии находиться не будут, почему?

Вернёмся к устройству электронной оболочки. Вокруг атома электроны сгруппированы по энергетическим уровням,
каждый заполненный уровень экранирует ядро и является более стабильным, нежели не до конца заполненный
уровень. То есть электронная конфигурация стремиться к состоянию заполненного подуровня: если на p-оболочке
находится 5 электронов, то вероятнее атом примет один электрон, нежели отдаст пять. Так, например, у атома
хлора, пять электронов на 3p-подуровне, энергия сродства хлора — 3.61 эВ, энергия ионизации — 13 эВ. У натрия
на последнем подуровне один электрон, энергия сродства — 0,78 эВ, потенциал ионизации — 0,49 эВ, поэтому
вероятнее натрий отдаст один электрон, нежели примет его.

Зная потенциал ионизации и энергию сродства мы можем сделать предположение о взаимодействии веществ. Если
смешать натрий и хлор, и сообщить им энергию, то вероятнее всего Na будет отдавать один электрон Cl и
в результате получится смесь ионов Na+ и Cl-.

Пример

Так можно по номеру элемента предположить, какой заряд он будет иметь, например, 19й элемент, электронная
конфигурация — 1s 22s 22p 63s 23p64s 1,
вероятнее всего, такой элемент может либо отдать, либо принять один электрон.
У 27го элемента электронная конфигурация выглядит так:
1s 22s 22p 63s 23p64s 23d7,
у d-подуровня всего может быть 10 атомов, т.е. либо атом примет 1,2 или 3 электрона, либо отдаст
1,2,3…7 электронов, так, вероятнее, он примет 3, т.е. возможные состояния — это +1, +2 и +3,

Теперь Вы знаете, что такое ионы, осталось изучить химическую связи и Вы сможете составлять
окислительно-восстановительные реакции!

Положительные и отрицательные ионы

Наглядным примером ионной химической связи может служить обычная поваренная соль NaCl, которая присутствует на каждой кухне. Атомы натрия (и вообще всех металлов) слабо удерживают внешние электроны, тогда как атомы хлора напротив, обладают очень большой способностью притягивать к себе электроны, т.е обладают большой электроотрицательностью.

Поэтому при образовании молекулы NaCl каждый атом Na теряет один электрон (e—), образуя положительный ион натрия Na+, а каждый атом Cl, наоборот, приобретает этот потерянный электрон натрия, образуя отрицательный ион хлора Cl—. Это записывается в виде двух реакций:

Na → Na+ + e—   и   ½Cl2 + e— → Cl—

Записать ½Cl2 пришлось потому, что газообразный хлор в природе состоит из двухатомных молекул, а не из свободных одиночных атомов хлора.

На рисунке выше, изображена кристаллическая решетка NaCl, где каждый хлорид-ион Cl— окружен со всех сторон соседними положительными ионами натрия Na+; ионы натрия Na+ точно также окружены ближайшими хлорид-ионами Cl—. Подобное расположение ионов обладает высокой устойчивостью.

Положительно заряженные ионы называются катионами. К ним в основном относятся металлы, так как они легко отдают от одного до трех электронов. Ниже приведены примеры катионов:

Анионами являются неметаллы, поскольку с радостью присоединяют к себе электроны, превращаясь в отрицательно заряженные ионы. Примеры анионов:

Ионные реакции в растворе

Сами растворы и кристаллы следует рассмотреть детальнее. В кристаллах солей существуют отдельно расположенные положительные ионы, к примеру, катионы натрия и отрицательные, анионы хлора. Структура кристалла удивительна: за счет сил электростатического притяжения и отталкивания ионы ориентируются особым образом. В случае с хлоридом натрия они образуют так называемую алмазную кристаллическую решетку. Здесь каждый натриевый катион окружен 6 хлоридными анионами. В свою очередь, каждый хлоридный анион окружает 6 анионов хлора. Из-за этого простая поваренная соль и в холодной и горячей воде растворяется почти с одинаковой скоростью.

В растворе тоже не существует цельной молекулы хлорида натрия. Каждый из ионов здесь окружается диполями воды и хаотично передвигается в ее толще. Наличие зарядов и электростатических взаимодействий приводит к тому, что солевые растворы воды замерзают при температуре чуть меньше нуля, а кипят при температуре выше 100 градусов. Более того, если в растворе присутствуют другие вещества, способные вступить в химическую связь, то реакция протекает не с участием молекул, а ионов. Это создало учение о стадийности химической реакции.

Те продукты, которые получаются в конце, не образуются сразу в ходе взаимодействия, а постепенно синтезируются из промежуточных продуктов. Изучение ионов позволило понять, что реакция протекает как раз по принципам электростатических взаимодействий. Их результатом является синтез ионов, которые электростатически взаимодействуют с другими ионами, создавая конечный равновесный продукт реакции.

Описание

Понятие и термин «ион» ввёл в 1834 году Майкл Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов.
Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду) — анионами.

Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обуславливают свойства электролитов.

Согласно химической номенклатуре, название катиона, состоящего из одного атома совпадает с названием элемента, например, Na+ называется натрий-ионом, иногда добавляют в скобках заряд, например, название катиона Fe2+ — железо (II)-ион. Название состоящего из одного атома аниона образуется из корня латинского названия элемента и суффикса «-ид», например, F- называется фторид-ионом.

Степень окисления веществ

Заряд простого, одноатомного иона, например Mg2+ или F2-, называется его степенью окисления. Степень окисления — это такое число электронов, которое необходимо прибавить (восстановить) к иону или отнять (окислить) у него, чтобы он превратился обратно в нейтральный атом.

  • Реакция восстановления: Mg2+ + 2e— → Mg
  • Реакция окисления: F2- → F + 2e—

Процесс присоединения электронов к атому или просто их смещение в сторону данного атома называется реакцией восстановления, а оттягивание электронов от атома или их полное удаление называется реакцией окисления. Вот вам отличная шпаргалка со степенями окисления простых ионов:

Пример 12. Окисляется или восстанавливается хлор при образовании хлорид-иона? Какова степень окисления этого иона?Решение: Хлор восстанавливается, поскольку к каждому атому хлора необходимо присоединить один электрон, чтобы образовался хлорид-ион. Хлорид-ион, Сl—, имеет степень окисления -1.

Пример 13. Окисляются или восстанавливаются металлы при образовании ими ионов? Какова степень окисления иона алюминия?Решение: При образовании ионов металлов последние окисляются, поскольку при этом происходит удаление электронов от атомов металла. Ион алюминия, Аl3+, имеет степень окисления +3.

Ионизация

Атомы и молекулы могут превращаться в положительно заряженные ионы в результате потери одного или нескольких электронов. Отрыв электрона от атома или молекулы требует затраты энергии, называемой энергией ионизации.

Положительно заряженные ионы также образуются при присоединении протона (положительно заряженного ядра атома водорода). Примером является молекулярный ион водорода, ион аммония, ониевые соединения.

Отрицательно заряженные ионы образуются в результате присоединения электрона к атому или молекуле. Присоединение электрона сопровождается выделением энергии.

Положительный ион водорода (H+) получается при ионизации атома водорода, в физике он имеет название протон и обозначается символом p (или p+); протоны вместе с нейтронами образуют все атомные ядра. Энергия ионизации в данном процессе имеет значение 13,595 эВ.

Для атома гелия энергия ионизации составляет 24,581 эВ и 54,403 эВ и соответствует отрыву первого и второго электронов. Получаемый ион гелия (He2+) в физике имеет название альфа-частица. Выброс альфа-частиц наблюдается при радиоактивном распаде некоторых атомных ядер, например 88Ra226.

Энергия отрыва первого электрона атома имеет явно выраженный периодический характер в зависимости от порядкового номера элемента.

Зависимость энергии ионизации атомов от порядкового номера элемента

В связи с низкими значениями энергии ионизации щелочных металлов, их атомы легко теряют свои внешние электроны под действием света. Работа отрыва электрона производится в данном случае за счёт энергии поглощаемых металлом квантов света.

Комментарии

Серафим (08.12.2011)
Комментарии: 9049
Материалы пользователя
Отправить личное сообщение

Серафим Ср, 08/02/2012 — 17:17

hallas (14.11.2010)
Комментарии: 2293
Материалы пользователя
Отправить личное сообщение

hallas Ср, 08/02/2012 — 22:54

Quis custodiet ipsos custodes?

Armour-Hero (12.01.2012)
Комментарии: 1178
Отправить личное сообщение

Armour-Hero Чт, 09/02/2012 — 12:18

evil man (18.01.2012)
Комментарии: 80
Отправить личное сообщение

evil man Чт, 09/02/2012 — 21:21

God Of Heavy Metal (27.03.2011)
Комментарии: 172
Отправить личное сообщение

God Of Heavy Metal Вс, 04/03/2012 — 00:26

Whosoever holds this Hammer, if he be worthy, shall possess the power of THOR

HEAVY METAL 

Процесс образования ионов на примере

Чтобы понять процесс ионизации, рассмотрим структуру хлорида натрия. Хлорид натрия – это поваренная соль которую мы используем в нашей повседневной жизни. Атомные номера Na и Cl равны 11 и 17 соответственно. Это означает, что атом натрия имеет 11 и атом хлора имеет 17 электронов на своих орбитах.

Атом Na имеет только один электрон на своей внешней орбите. В то время как хлор содержит семь на своей внешней орбите. Но мы знаем, что для стабильности атомы обычно требуют восемь электронов на своей внешней орбите. Таким образом, оба указанных атома химически активны. Когда эти атомы собраны вместе, атом Na теряет свои самые внешние электроны, становится положительно заряженным, а атом Cl получает один электрон и становится отрицательно заряженным. Так как атомы получают восемь электронов в их внешней орбиты путем их обмена. Между Na и Cl действует электростатическая сила между и они совместно сделали одну молекулу NaCl.

Как отмечается, ионные связи возникают, когда металл связывается с неметаллом, и эти связи чрезвычайно прочны.

Таким образом, соль образуется ионной связью между металлическим натрием (катион +1) и неметаллическим хлором (анион -1). При этом Na соединяется с Cl с образованием NaCl или поваренной соли. Прочность скрепления в соли отражена своей высокой точкой плавления 800°C.

 Ионные соединения и твердые тела

Не только соль сформирована ионным скреплением. Соль также пример ионного твердого тела или кристаллического твердого тела которое содержит ионы.

Кристаллический солидис: тип твердого тела в котором составные части аранжированы в простой, определенной геометрической картине которая повторена во всех направлениях.

Существует три типа кристаллического твердого вещества: молекулярное твердое (например, сахароза или столовый сахар), в котором молекулы имеют нейтральный электрический заряд; атомная твердые (алмаз, например, из чистого углерода); и ионные твердые.

Соль не образуется из обычных молекул, как вода или углекислый газ. Внутреннюю структуру соли можно представить в виде повторяющейся серии хлоридных анионов и катионов натрия, плотно упакованных друг с другом, как апельсины в ящике.

Эта плотная упаковка положительных и отрицательных зарядов помогает сформировать плотное скрепление, и поэтому соль необходимо нагреть до высокой температурой прежде чем она расплавится. Твердая соль не проводит электричество, но расплавленная, она становится весьма хорошим проводником. Когда она твердая, ионы плотно упакованы, и таким образом не способствуют движению электрических зарядов; но когда структура нарушена путем плавления или растворения в чем либо движение ионов возможно.

Классификация

Ионы делятся на две группы:

  • простые или моноатомные – содержат одно ядро, т.е. состоят из одного атома вещества;
  • сложные или полиатомные – содержат минимум два ядра, т.е. состоят из двух и более атомов вещества.

К простым ионам относятся катионы и анионы металлов и неметаллов – Na+, Mg2+, Cl–. Сложные ионы образуются при присоединении иона к нейтральным молекулам вещества. Например:

  • NH3 + H+ → NH4+;
  • BF3 + F– → BF4–.

Катионами являются ионы металлов, водорода, аммония и некоторых других веществ. Анионами являются гидроксид-ион (OH–), ионы кислотных остатков, неметаллов и других веществ.

Некоторые атомы могут становиться катионами или анионами в зависимости от реакции.

Также выделяют ион-радикалы – свободные заряженные частицы, способные присоединять атомы или присоединяться к атомам других веществ. В зависимости от заряда делятся на китионы-радикалы и анионы-радикалы.

Ионная связь – класс соединения ионов. Ионная связь возникает в результате электростатического притяжения анионов и катионов. При этом атом с большей электроотрицательностью притягивает атом с меньшей электроотрицательностью. Ионная связь возникает преимущественно между ионами металлов и неметаллов. Металл всегда отдаёт электроны, т.е. является восстановителем.

Рис. 3. Схема ионной связи.

Что мы узнали?

Из темы урока узнали, что такое ионы. Атом становится ионом при отщеплении или присоединении электронов. Если электронов становится меньше, то атом приобретает положительный заряд за счёт преобладания протонов и становится катионом. При увеличении количества отрицательно заряженных электронов атом становится анионом. Ионы способны передавать электричество и обязательно присутствуют в электролитах. Между ионами возникает ионная связь за счёт электростатического притяжения отрицательных и положительно заряженных частиц.

Силы и способности

Силы

 Индукция Силы Воли: Ион обладает практически бесконечными силами, основанными на силе воли.

Соединение: Ион может создать связь с телом существа, когда они чувствуют, что получили невероятный «заряд» силы воли или смогли дистанцироваться от своих более сложных эмоций.

Управление временем: Возможность контролировать время.

Управление реальностью: Возможность контролировать реальность.

Манипуляция энергией посредством усиления силы воли: Как воплощение силы воли, Ион может контролировать, управлять и генерировать зеленую энергию, получаемую из эмоционального спектра вселенной, который включает в себя всю силу воли всех живых существ во вселенной. Все его силы похожи на способности кольца Зеленого Фонаря и Звездного Сердца (Starheart).

Бессмертие: Как сущность, основанная на эмоциональном понятии, Ион по всем стандартам бессмертен.

Полет

Оцените статью:
Оставить комментарий