Виды и устройство оптронов (оптопар)
Содержание
- 1 Пример твердотельного реле
- 2 Особенности устройств
- 3 Производители слаботочных электромагнитных реле (СЭМР), соответствующих ГОСТ 16121 и ГОСТ РВ 20.39.411 (См.Табл.технических характеристик СЭМР)
- 4 Сравнение International Rectifier с другими производителями
- 5 Классификация разновидностей оптопар
- 6 Сфера применения устройства
- 7 Применение
- 8 Входная цепь переменного тока твердотельного реле
Пример твердотельного реле
Предположим, нам нужен микроконтроллер с сигналом порта цифрового выхода всего лишь +5 В для управления нагревательным элементом 120 В переменного тока, 600 Вт. Для этого мы могли бы использовать опто-триационный изолятор MOC 3020, но внутренний триак может пропускать только максимальный ток (I TSM ) в пике 1 А на пике источника переменного тока 120 В, поэтому необходимо также использовать дополнительный переключающий триак.
Сначала давайте рассмотрим входные характеристики оптоизолятора MOC 3020 (доступны другие опто-триаки). Спецификация оптоизоляторов говорит нам, что прямое напряжение (V F ) падения входного светодиода составляет 1,2 В, а максимальный прямой ток (I F ) составляет 50 мА.
Светодиоду требуется около 10 мА, чтобы он мог достаточно ярко светиться до максимального значения 50 мА. Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. Тогда значение требуемого тока лежит где-то между 10 и 30 миллиампер. Следовательно:
Таким образом, можно использовать резистор для ограничения последовательного тока со значением от 126 до 380 Ом. Поскольку порт цифрового выхода всегда переключается на +5 В и для уменьшения рассеивания мощности через светодиод оптопары мы выберем предпочтительное значение сопротивления 240 Ом. Это дает светодиодный прямой ток менее 16 мА. В этом примере подойдет любое предпочтительное значение резистора между 150 Ом и 330 Ом.
Нагрузка нагревательного элемента составляет 600 Вт. Использование 120 В переменного тока даст нам ток нагрузки 5 ампер (I = P / V). Поскольку мы хотим управлять этим током нагрузки в обоих полупериодах (все 4 квадранта) формы сигнала переменного тока, нам потребуется триак переключения сети.
BTA06 — это симистор 600 В на 6 ампер (I T (RMS) ), подходящий для общего / двухпозиционного переключения нагрузок переменного тока, но подойдет любой аналогичный симистор с номинальным напряжением 6–8 ампер. Кроме того, для этого переключающего триака требуется только 50 мА привода затвора для запуска проводимости, что намного меньше максимального значения 1 А для оптоизолятора MOC 3020.
Учтите, что выходной триак оптоизолятора включился при пиковом значении (90 o ) среднеквадратичного напряжения питания 120 В переменного тока. Это пиковое напряжение имеет значение: 120 x 1,414 = 170Vpk. Если максимальный ток опто-триаков (I TSM ) составляет 1 А, то минимальное значение требуемого последовательного сопротивления составляет 170/1 = 170 Ом или 180 Ом до ближайшего предпочтительного значения. Это значение 180 Ом будет защищать выходной триак оптопары, а также затвор триака BTA06 при питании 120 В переменного тока.
Если симистор оптоизолятора включается при значении пересечения нуля (0 o ) среднеквадратичного переменного напряжения питания 120 В , то минимальное напряжение, необходимое для подачи требуемого тока возбуждения затвора 50 мА, заставляющего переключающий триак в проводимость, будет: 180 Ом х 50 мА = 9,0 вольт. Затем симистор срабатывает, когда синусоидальное напряжение Gate-to-MT1 превышает 9 вольт.
Таким образом, минимальное напряжение, требуемое после точки пересечения нуля формы сигнала переменного тока, должно составлять 9 вольт, при этом рассеяние мощности в этом последовательном затворном резисторе очень мало, поэтому можно безопасно использовать резистор номиналом 0,5 Ом с сопротивлением 0,5 Ом и номиналом 0,5 Вт. Рассмотрим схему ниже.
Особенности устройств
Отсутствие переходных процессов в виде дуги и искр увеличивает время эксплуатации в несколько раз. Если обычный контакт, в лучшем случае, рассчитан на 500 тысяч коммутаций, то силовой электронный элемент не имеет таких данных. Даже при более высокой стоимости, электронные реле выгоднее использовать еще и с точки зрения экономии, ведь для их включения и выключения необходимо меньше потратить электроэнергии по сравнению с традиционным электромагнитным реле, и управление мощной нагрузкой происходит непосредственно микросхемами.
Номенклатура типов изделий довольно большая: от миниатюрных размеров до устройств, управляющих двигателями исполнительных механизмов. Также разница и в типе коммутируемого напряжения, на постоянное и переменное. Это необходимо учитывать при выборе твердотельного реле.
У каждого устройства есть свои слабые стороны, и твердотельные реле не исключение. Ахиллесова пята электронных ключей — это чувствительность к току нагрузки, превышение которого электронные компоненты тяжело переживают, а при превышении в несколько раз, и вовсе выходят из строя. Поэтому при подборе или замене аппарата, необходимо ответственно подойти и к защите ключа защитными устройствами. Нужно выбирать ключи в два или три раза большим током, от коммутируемой нагрузки
Помимо этого важно снабдить силовую цепь предохранительными плавкими вставками или быстрыми специальными автоматами класса В
Производители слаботочных электромагнитных реле (СЭМР), соответствующих ГОСТ 16121 и ГОСТ РВ 20.39.411 (См.Табл.технических характеристик СЭМР)
РОССИЙСКИЕ ПРЕДПРИЯТИЯ | ||
---|---|---|
Наименование предприятия | Контактная информация | Типы выпускаемых реле (см.табл.хар-к) |
АО НПК «Северная заря» |
194100 Россия, Санкт-Петербург, Кантемировская ул., 7 тел.: (812) 2954438, 2958491, 3317926, 3317933 факс: (812) 5429293, 5426477, 3317920 e-mail: general@relays.ru, sale@relays.ru, institute@relays.ru, http://www.relays.ru | Основная номенклатура отечественных якорных СЭМР (типа РПА, РЭА,РПК, РПС, РЭК, РЭС) для специального (герметичные) и индустриального (в пластиковом корпусе) применения,а также специальные слаботочные реле времени типа РВЭ с контактным или бесконтактным выходом |
ОАО «НПП «Старт» |
173000 Россия, Великий Новгород, ул.Нехинская, 55 тел.: (8162) 620633, 621871 факс: (8162) 616446 e-mail: start_relay@mail.natm.ruhttp://www.relay-start.ru | Основная номенклатура отечественных герконовых СЭМР (типа РГА, РГК, РПС, РЭС) и якорные СЭМР типа РПА, РПВ, РПС, РЭК для специального и индустриального применения,а также специальные статические бесконтактные реле типа БКУ, РСК и реле времени типа РДВ11 |
ОАО «Иркутский релейный завод» |
664075 Россия, г.Иркутск, ул.Байкальская, 239 тел.: (3952) 226030, 226668 факс: (3952) 245745, 245646 e-mail: marketing@irzirk.ru http://irzirk.ru | Некоторые типы СЭМР для специального и индустриального применения,а также открытые и зачехленные мощные ЭМР |
ОАО «Завод «Электроприбор» |
429800 Россия, Чувашия, г.Алатырь, пл.Октябрьской революции, 23 тел.: (83531) 50576, 50077 факс: (83531) 50357, 52467 e-mail: elpri@cbx.ru http://www.100rus.ru/pfo/epribor.htm | Некоторые типы герконовых и якорных (открытых, зачехленных и герметичных) СЭМР для специального и индустриального применения,а также промежуточные, электротепловые и реле времени типа РСВ с контактным выходом |
ОАО «Реле» |
243240 Россия, Брянская обл., г.Стародуб, ул.Калинина, 15 тел./факс: (48348) 22559, 22565 e-mail: rele@online.debryansk.ru http://www.debryansk.ru/~rele | Некоторые типы герконовых и якорных (открытых и зачехленных) СЭМР для телефонии, индустриального и специального применения |
ОАО «Порховский релейный завод» |
182620 Россия, г.Порхов, ул.Ленина, 20 тел./факс: (81134) 21161 e-mail: dollar@ellink.ru http://przcom.narod.ru | Некоторые типы герконовых и якорных (открытых и зачехленных) СЭМР для индустриального и специального применения,а также автомобильные реле типа РС 5ХХ |
ОАО «Рязанский завод металлокерамических приборов» |
390027 Россия, г.Рязань, ул.Новая, 51″В» тел.: (4912) 249716, 249707 факс: (4912) 441970 E-mail: marketing@rmcip.ru http://www.rmcip.ru | Некоторые герконовые СЭМР (типа РГК) для индустриального применения,а также герконы для герконовых реле |
ЗАРУБЕЖНЫЕ ПРЕДПРИЯТИЯ | ||
Украинское ГП «Завод «Радиореле» | 61105 Украина, г.Харьков, пр.Гагарина, 181 тел.: (380-572) 525104, 507235 факс: (380-572) 524047, 525000 | Некоторые типы якорных СЭМР для специального и индустриального применения |
Украинское ОАО «Юность» | 94400 Украина, Луганская обл., г.Краснодон, пр.60-летия СССР, 1 тел.: (380-06435) 23390, 25203 факс: (380-06435) 25615, 25634 E-mail: junost@krasnodon.lg.ua | Некоторые типы якорных СЭМР для специального и индустриального применения |
Leach International | http://www.leachintl.com | Якорные и герконовые СЭМР, в основном соответствующие требованиям ГОСТ 16121, для специального и индустриального применения |
Allied Controls | http://www.alliedcontrols.com | |
Babcock | http://www.babcockinc.com | |
Deutsch Relays | http://www.deutschrelays.com | |
Magnecraft | http://www.magnecraft.com | |
Teledyne Relays | http://www.teledynerelays.com | |
American Zettler | http://www.azettler.com | |
TYCO ELECTRONICS: CII Relays, Potter& Brumfield Relays,… | http://www.ciitech.comhttp://www.tycoelectronics.com |
Сравнение International Rectifier с другими производителями
Ведущими мировыми производителями оптоэлектронных реле считаются Avago, Clare, Cosmo, Fairchild, NEC, Panasonic, Sharp, Toshiba. Детальное сравнение, а, тем более подбор аналогов, очевидно, выходит за возможности данного обзора.
Имеет смысл сравнивать по двум группам (быстродействующие, низковольтные мощные реле). Очевидно, что сравнение технических параметров реле общего назначения даст примерно одинаковые результаты. Сопоставляются компоненты близкие по величине рабочего напряжения (300 В для быстродействующие и 60 В для низковольтных мощных). После чего сравниваются три основных параметра: ток нагрузки, сопротивление замкнутого контакта и время срабатывания. Результаты сравнения приведены в таблицах 8 и 9.
Сравнение быстродействующих оптореле
Модель | Произво-дитель | Рабочее напряжение, В |
Ток нагрузки, мА |
Сопротив-ление Ron, Ом | Ток управления, мА |
Напряжение изоляции, В |
Задержка распространения, мкс |
|
---|---|---|---|---|---|---|---|---|
Ton | Toff | |||||||
PVA3055 | IR | 300 | 50 | 160 | 5 | 4000 | 60 | 100 |
PLA160 | Clare | 300 | 50 | 100 | 10 | 3750 | 50 | 50 |
PVA3324 | IR | 300 | 150 | 24 | 2 | 4000 | 100 | 110 |
ASSR-4110-003E | Avago | 400 | 120 | 25 | – | 3750 | 500 | 200 |
PLA110L | Clare | 400 | 150 | 25 | 5 | 3750 | 1000 | 250 |
KAQY210/A | Cosmo | 350 | 130 | 20 | 1,5 | 3750 | 1000 | 1500 |
HSR412 | Fairchild | 400 | 140 | 27 | 3 | 4000 | – | – |
PS7341C-1A | NEC | 400 | 120 | 27 | – | 3750 | 550 | 70 |
AQY210EH | Panasonic | 350 | 130 | 25 | – | 5000 | – | – |
TLP227G | Toshiba | 350 | 120 | 35 | 3 | 3750 | – | – |
Сравнение низковольтных мощных оптореле
Модель | Произво-дитель | «Рабочее напряжение, В» |
«Ток нагрузки, мА» |
Сопротив-ление Ron, Ом | «Ток управления, мА» |
«Напряжение изоляции, В» |
«Задержка рас-пространения, мкс» |
|
---|---|---|---|---|---|---|---|---|
Ton | Toff | |||||||
PVG612A | IR | 60 | 2000 | 0,1 | 5 | 4000 | 3500 | 500 |
LCA715 | Clare | 60 | 2000 | 0,15 | 10 | 3750 | 2500 | 250 |
PS710A-1A | NEC | 60 | 1800 | 0,1 | – | 1500 | 1000 | 50 |
AQY272 | Panasonic | 60 | 2000 | 0,18 | – | 2500 | – | – |
TLP3542 | Toshiba | 60 | 2500 | 0,1 | 10 | 2500 | – | – |
PVG612 | IR | 60 | 1000 | 0,5 | 5 | 4000 | 2000 | 500 |
ASSR-1510-003E | Avago | 60 | 1000 | 0,5 | – | 3750 | 1000 | 200 |
LCA710 | Clare | 60 | 1000 | 0,5 | 10 | 3750 | 2500 | 250 |
KAQV212/A | Cosmo | 60 | 400 | 0,83 | 1,5 | 3750 | 1500 | 1500 |
AQY212GH | Panasonic | 60 | 1100 | 0,34 | – | 5000 | – | – |
TLP3122 | Toshiba | 60 | 1000 | 0,7 | 5 | 1500 | – | – |
Для оптореле PVA3055 сопоставимое изделие найдено только у Clare. Изделия, сравнимые с PVA3324, есть и у других производителей, однако по быстродействию (особенно если брать сумму TON+TOFF) они существенно уступают предложению International Rectifier.
Поскольку производители в основном не указывают, для какого варианта подключений даны параметры, принимаем вариант А, как наиболее жесткий. В качестве базы для сравнения возьмем PVG612A и PVG612 с током нагрузки, соответственно, 1 и 2 А. При сравнимом значении коммутируемой мощности для этой группы оптореле сопротивление замкнутого контакта — более важный параметр, нежели задержка срабатывания, поскольку напрямую определяет потери мощности и, соответственно, нагрев реле. В обоих случаях можно говорить о том, что предложения International Rectifier — одни из лучших. Отметим, что у Avago, Cosmo и NEC в одном, а у Fairchild в обоих случаях не нашлось сопоставимых изделий.
Классификация разновидностей оптопар
Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.
В зависимости от степени интеграции:
- элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
- оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).
В зависимости от типа фотоприёмника:
- Фоторезисторные (или просто резисторные оптопары);
- Фотодиодные оптопары;
- Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
- Фототиристорные, либо фотосимисторные оптопары;
- Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).
Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.
Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо «твердотельное реле».
Рис.1: Устройство оптрона
Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:
Электронно-оптическое.
Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.
Оптическое.
Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.
Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:
- Оптронов;
- Кванто-оптических элементов.
Они являются моделями устройств соответственно электронно-оптического и оптического направлений.
Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.
Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.
Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.
Сфера применения устройства
Используются они в самых различных сферах:
- В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок.
- Другая важнейшая область применения оптронов – оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами. Импульсные блоки питания.
- Создание “длинных” оптронов (приборов с протяженным гибким волоконно-оптическим световодом) открыло совершенно новое направление применения изделий оптронной техники – связь на коротких расстояниях.
- Различные оптроны находят применение и в радиотехнических схемах модуляции, автоматической регулировки усиления и других.
- Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима.
- Возможность изменения свойств оптического канала при различных внешних воздействиях на него позволяет создать целую серию оптронных датчиков: таковы датчики влажности и загазованности, датчика наличия в объеме той или иной жидкости, датчики чистоты обработки поверхности предмета, скорости его перемещения.
- Универсальность оптронов как элементов гальванической развязки и бесконтактного управления, разнообразие и уникальность многих других функций являются причиной того, что сферами применения optocoupler стали вычислительная техника, автоматика, связная и радиотехническая аппаратура, автоматизированные системы управления, измерительная техника, системы контроля и регулирования, медицинская электроника, устройства визуального отображения информации.
Вид оптопары с разных сторон.
Преимущества оптронов
- возможность обеспечения гальванической развязки между входом и выходом;
- для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;
- возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;
- однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;
- широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот;
- возможность передачи по оптронной цепи, как импульсного сигнала, так и постоянной составляющей;
- возможность управления выходным сигналом оптрона путем воздействия на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;
- возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;
- невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки;
- физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и радиоэлектронными приборами.
Недостатки оптронов
- значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество – свет – электричество) и невысокими КПД этих переходов;
- повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей радиации;
- временная деградация параметров optocoupler;
- относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;
- сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;
- конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, с необходимостью объединения в одном приборе нескольких – отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях.
Структура оптрона
Применение
Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.
- Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор):
- Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
- Детекторы конечной (начальной) точки;
- Счётчики;
- Дискретные спидометры.
- Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
- Оптопарой (в большинстве случаев применяется как информационный передатчик);
- Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).
Входная цепь переменного тока твердотельного реле
Мостовые выпрямители преобразуют синусоидальное напряжение в двухполупериодные выпрямленные импульсы с удвоенной входной частотой. Проблема здесь заключается в том, что эти импульсы напряжения начинаются и заканчиваются с нуля вольт, что означает, что они упадут ниже минимальных требований к напряжению при включении порога входа SSR, в результате чего выход будет «включаться» и «выключаться» в каждом полупериоде.
Чтобы преодолеть это беспорядочное срабатывание на выходе, мы можем сгладить выпрямленную рябь, используя сглаживающий конденсатор (C1) на выходе мостового выпрямителя. Эффект зарядки и разрядки конденсатора повысит постоянную составляющую выпрямленного сигнала выше максимального значения напряжения включения на входе твердотельных реле. Тогда, даже если используется постоянно изменяющаяся синусоидальная форма волны напряжения, входной сигнал SSR видит постоянное напряжение постоянного тока.
Значения резистора падения напряжения R 1 и сглаживающего конденсатора C 1выбираются в соответствии с напряжением питания, 120 В переменного тока или 240 В переменного тока, а также входным сопротивлением твердотельного реле. Но что-то около 40 кОм и 10 мкФ подойдет.
Затем с добавлением этой мостовой выпрямителя и сглаживающей конденсаторной цепи можно управлять стандартным твердотельным реле постоянного тока, используя источник переменного или неполяризованного постоянного тока. Конечно, производители уже производят и продают входные твердотельные реле переменного тока (обычно от 90 до 280 В переменного тока).