Ограничитель мощности

Texas Instruments 74HC14

Kannan N

Electronic Design

Для питания внешних устройств или подсистем многим изделиям требуется дополнительный выход постоянного напряжения. Если такие подсистемы рассчитаны на горячее подключение, дополнительный выход должен быть защищен от коротких замыканий. Схемы, в которых используются предохранители, медленны, а падающее на предохранителях напряжение может влиять на основную систему.

Очень дешевая схема, обеспечивающая импульсное ограничение тока, показана на Рисунке 1. Схема может реагировать на кратковременные или постоянные короткие замыкания выхода. Единственный побочный эффект, создаваемый схемой на входной шине, – небольшой провал напряжения (сотни милливольт в течение сотен микросекунд). Основные элементы, использованные в устройстве – это инвертор с триггером Шмитта U1 (74HC14), транзисторный ключ Q2 и токоизмерительный резистор RSENSE. Напряжение питания VIN этой схемы равно 12 В, а расчетный максимальный ток нагрузки – 0.6 А.

Рисунок 1.Для того, чтобы сделать этот импульсный ограничитель
тока, нужно затратить менее 50 центов.

В нормальном режиме работы, когда ток нагрузки не превышает 500 мА, транзистор Q1 закрыт, напряжение в точках V1 и V2 равно нулю, C1 разряжен, а напряжение в узле V3 равно 5 В. Транзисторы Q3 и Q2 включены, и выходное напряжение VOUT = 12 В.

Если ток нагрузки превысит 0.6 А, транзистор Q1 включится, напряжение V1 увеличится, и конденсатор C1 будет заряжаться через диод D1 с небольшой постоянной времени C1×R1. Когда напряжение V2 превысит верхний порог переключения 74HC14, напряжение в точке V3 упадет практически до нуля, транзистор Q3 закроется и выключит Q2, в результате чего протекание тока через нагрузку прекратится. Вслед за ним выключится транзистор Q1, напряжение в узле V1 станет низким, и конденсатор C1 начнет заряжаться с большой постоянной времени, равной C1×R2. По истечении промежутка времени, зависящего от C1 и R2, напряжение в узле V2 станет низким, в узле V3 – высоким, и проходной транзистор Q2 откроется.

В случае продолжительного замыкания выхода этот процесс периодического импульсного включения и выключения продолжится. При больших токах нагрузки возникнут проблемы, связанные с большой мощностью, рассеиваемой на резисторе RSENSE. В связи с этим Q1 можно заменить монитором тока верхнего плеча (таким, например, как ZXCT1021) и внести соответствующие изменения в схему. D2 выполняет защитную функцию, разряжая конденсатор C1 при выключении питания. Транзистор Q2 должен выдерживать достаточный ток (желательно от 4 до 5 А). Разработчики также должны не забывать о разбросе пороговых напряжений триггера Шмитта. Для снижения прямого падения напряжения Q2 можно заменить p-канальным MOSFET. При более высоких напряжениях (например, 24 В) необходимо обеспечить защиту промежутка затвор-исток MOSFET: это напряжение не должно превышать пробивного напряжения стабилитрона.

Когда выход был закорочен резистором 1 Ом, напряжение в точке V2 начало изменяться по пилообразному закону между пиковыми значениями 2 В и 3.2 В с временем нарастания 500 мкс и временем спада 1 с. Амплитуда импульса выходного тока была равна примерно 1.5 А при длительности 500 мкс, а провал входного напряжения составлял 0.2 В в течение тех же 500 мкс. Чтобы сократить длительность импульса тока короткого замыкания, емкость конденсатора C1 можно уменьшить (скажем, до 0.47 мкФ).

Материалы по теме

  1. Datasheet ON Semiconductor MJE171
  2. Datasheet Texas Instruments 74HC14
  3. Datasheet Diodes ZXCT1021

Перевод: AlexAAN по заказу РадиоЛоцман

На английском языке: Auto-Resetting Circuit Protects Auxiliary Outputs Against Shorts

6 предложений от 5 поставщиков
Исполнение: TSSOP14. TSSOP 14/A°/HEX INVERTING SCHMITT TRIGGER

AliExpressВесь мир 61089B HC4066 74HC4066 9412AGM MB6S MB8S MB10S Z1016AI AOZ1016AI G1563 OZ9902BGN LNK614DG 74HC14 74HC14D AOZ1037PI Z1037PI Z1037PI1,49 ₽Купить
ПМ ЭлектрониксРоссия 74HC14D,653Nexperiaот 6,97 ₽Купить
ДессиРоссия Логическая ИС 74HC14PW.118NXP15,18 ₽Купить
КремнийРоссия и страны СНГ 74HC14PW,112по запросуКупить
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.

Публикации по теме

  • Схемы Один транзистор защищает преобразователь от коротких замыканий
  • Схемы Как защитить выход драйвера светодиодов от коротких замыканий на землю
  • Форум Обсуждение: Драйвер нижнего плеча с улучшенной защитой от коротких замыканий
  • Схемы Способы диагностики обрывов и коротких замыканий в жгутах проводов
  • Схемы Добавьте дополнительный выход к повышающему DC/DC преобразователю

Что это такое

Как показано на Рис.2, тиристор составлен из двух транзисторов разной проводимости: npn и pnp, включенных «навстречу» друг-другу. Если приоткрыть один из транзисторов (npn), приложив между его эмиттером и базой напряжение порядка 0,6 … 0,8 В (напряжение открывания кремниевого p-n перехода), то в коллекторе потечет ток.

Схема тиристора

Появившееся напряжение между базой и эмиттером второго транзистора начнет открывать его и, одновременно, через коллектор второго транзистора, — первый транзистор. Все это будет лавинообразно нарастать с очень большой скоростью, и теперь уже независимо от начального напряжения. Достаточно только «подтолкнуть» процесс открывания небольшим начальным импульсом.

Для закрывания тиристора необходимо понизить ток в его цепи до минимальной величины, называемой током удержания, и чуть ниже. Поскольку переменный ток так себя и ведет в каждом полупериоде, то каждая половинка симистора будет закрываться, когда меняется полярность в цепи тока.

Схема и устройство симистора

Схема симистора показана на рисунке Рис. 3 слева, а его физическое устройство, — справа. Напоминаем, что это два встречно-параллельно включенных тиристора. Выводы Т1 и Т2 уже нельзя назвать анодом и катодом, в цепи переменного тока они становятся равноправными. Однако, в цепи постоянного тока триак ведет себя как обычный тиристор и даже содержит «запасной», хотя для его использования придется поменять полярность управляющего напряжения.

Дополнительная информация! Кстати говоря, как тиристор, так и симистор, могут быть составлены из обычных транзисторов разной структуры, имея ту же работоспособность. Главное, чтобы они были рассчитаны на требуемый ток и допустимое напряжение. Но на практике это не используется, с очень давних времен (1960-е) тиристоры стали выпускать в виде готовых приборов в одном корпусе.

Современный тиристор или симистор средней мощности выглядит, как показано на Рис. 4.

Триак BTA136

Как работает приспособление?

Ограничитель непрерывно следит за состоянием электросети, особенно при повышенной нагрузке. В момент превышения установленного владельцем расхода сетевой энергии, устройство в автоматическом режиме «заблокирует» линию цепи нагрузки. После определенного, установленного заранее, временного промежутка ограничитель автоматически возобновит подачу электричества на линию и, если потребление стало ниже критического, то цепь нагрузки будет и дальше подключенной.

Конструкция ОМ представлена несколькими функциональными блоками. Так измерительным блоком осуществляется сбор сведений по расходу электроэнергии благодаря датчикам напряжения и тока. На основании этих данных в логическом «центре» приспособления происходит вычисление точного значения мощности, имеющейся в настоящий момент, с последующим его сравнением потенциометром с параметрами, установленными абонентом в качестве максимально возможных (критических). Если текущая мощность «подходит» к критическим величинам, то от вычислительного блока на исполнительную схему поступит сигнал на отключение лишней нагрузки. Эта команда будет выполнена контактором незамедлительно.

После срабатывания ОМ пользователю необходимо перейти к отключению дополнительных приспособлений, работа которых могла привести к превышению установленного электролимита. По истечении установленного времени ограничитель даст команду на включение и продолжит контролировать мощность в обычном режиме.

Регулировать мощность (ее критическую величину), время отключения, а также повторного включения можно благодаря потенциометрам. Выводы обладают двумя группами клемм – для подключения питания и для регулировки включения/отключения нагрузки. По напряжению и току встроенным контакторам свойственно отличаться, поэтому имеется возможность воспользоваться внешними контакторами.

В определенных моделях предусмотрена функция, контролирующая подключение лишь приоритетных нагрузок. Неприоритетные нагрузки, при этом, отключаются. Как вы видите, принцип действия ОМ достаточно сложен, ведь присутствует вычислительный блок, благодаря которому и происходит контроль мощности.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь — ток удержания,
— максимальный ток, — максимальное напряжение,
— отпирающий ток.

Модель
BT134-600D10 мА4 А600 В5 мА
MAC97A810 мА0,6 А600 В5 мА
Z06075 мА0,8 А600 В5 мА
BTA06-600C25 мА6 А600 В50 мА

Реле

С точки зрения микроконтроллера, реле само является мощной нагрузкой,
причём индуктивной. Поэтому для включения или выключения реле нужно
использовать, например, транзисторный ключ. Схема подключения и также
улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле
HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать
нагрузку, потребляющую ток до 15 А.

Главное преимущество реле — простота использования — омрачается
несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных
реле. Это,
фактически, полупроводниковые приборы с гальванической развязкой,
содержащие внутри полноценную схему мощного ключа.

Заключение

Таким образом, в арсенале у нас достаточно способов управления
нагрузкой, чтобы решить практически любую задачу, которая может
возникнуть перед радиолюбителем.

Полезные источники

  1. Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
  2. Управление мощной нагрузкой переменного тока
  3. Управление мощной нагрузкой постоянного тока. Часть 1
  4. Управление мощной нагрузкой постоянного тока. Часть 2
  5. Управление мощной нагрузкой постоянного тока. Часть 3
  6. Щелкаем реле правильно: коммутация мощных нагрузок
  7. Управление мощной нагрузкой переменного тока
  8. Управление MOSFET-ами #1
  9. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
  10. Ключ на плечо! – особенности применения высоковольтных драйверов производства IR

Ограничитель разрядки аккумуляторной батареи | Все своими руками

     Всем известно, что глубокая разрядка аккумуляторных батарей резко уменьшает срок эксплуатации последних. Для того чтобы исключить такой режим работы аккумуляторов применяют различные схемы – ограничители разрядки. С появлением микросхем и мощных полевых переключательных транзисторов такие схемы стали иметь небольшие габариты, стали более экономичными.

     Схема ограничителя, ставшая уже классической, показана на рисунке 1, ее можно встретить во многих схемах радиолюбителей. Устройство предназначено для работы в составе бесперебойного источника питании домашнего инкубатора. Полевой транзистор VT1 – IRF4905 в данной схеме выполняет функцию ключа, а микросхема КР142ЕН19 является компаратором напряжения.

     При замыкании контактов К1, это контакты реле, которые подключают аккумулятор при отсутствии напряжения сети 220В, на схему подается напряжение с аккумуляторной батареи GB1, но так как сам по себе транзисторный ключ открыться не может, то для его запуска введены два дополнительных элемента – С1 и R2. И так, при появлении напряжения на входе, начинает заряжать конденсатор С1. В первый момент начала его заряда затвор транзистора оказывается зашунтирован этим конденсатором на общий провод схемы. Транзистор открывается и если напряжение на аккумуляторной батарее находится выше установленного на компараторе порога, он остается открытым и далее, если же напряжение ниже…, то транзистор сразу же закрывается. Порог отключения аккумулятора от нагрузки устанавливается резистором R3. Компаратор работает следующим образом. По мере разряда аккумуляторной батареи напряжение на выводе 1 микросхемы DA1 КР142ЕН19 будет уменьшаться и как только оно приблизится к опорному напряжению данной микросхемы -2,5В, начнет увеличиваться напряжение на ее выводе 3, что соответствует уменьшению напряжения на участке исток-затвор транзистора VT1. Транзистор начнет закрываться, что приведет к еще большему уменьшению напряжению на выводе 1 DA1. Возникает лавинообразный процесс закрывания VT1. В результате этого нагрузка будет отсоединена от аккумулятора. Ток нагрузки, коммутируемый данным транзистором, может быть увеличен в разы при условии соблюдения теплового режима транзистора. Я имею в виду установку его на радиатор, но не забывайте, что при температуре кристалла 100°С, максимальный ток стока уменьшается до 52А. Мощность стока транзистора 200Вт дана в справочнике для температуры 25°С.

     Резистор R1 нужен для создания необходимого тока через микросхему, который должен быть не менее одного миллиампера. Конденсаторы С1 и С3 блокировочные. R4 это сопротивление нагрузки. Если последовательно с нагрузкой включить диод, лучше с барьером Шоттки, то можно ввести в данную схему индикатор перехода работы на аккумуляторную батарею – светодиод HL1. Для экономии энергии батареи в качестве индикатора лучше взять сверхъяркий светодиод и подобрать номинал резистора R по нужной яркости.

Рисунок печатной платы ограничителя разряда аккумулятора скачать можно здесь.

Скачать “Ограничитель разрядки аккумуляторной батареи” Ogran-zaryda-akkum.rar – Загружено 1 раз – 6 KB

Что такое токоограничитель?

Прибор, схема которого построена таким образом, что предотвращает возможность возрастания силы электричества выше заданных или допустимых пределов амплитуды, называется ограничителем тока. Наличие защиты сети при установленном в нем ограничителе тока дает возможность уменьшить требования к последней в плане динамической и термической устойчивости в случае закорачивания.

В высоковольтных линиях с величиной напряжения до 35 кВ ограничение КЗ добиваются путем применения электрических реакторов, в отдельных случаях – предохранителей плавких, созданных на основе мелкозернистых наполнителей. Также цепи, питаемые высоким и низким напряжением, защищают схемами, собранными на базе:

  • выключателей тиристорных;
  • реакторов нелинейного и линейного типа, с шунтированием переключателями полупроводниковыми оперативного срабатывания;
  • реакторами нелинейными с подмагничиванием.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Транзисторный ключ с защитой по току

Ключи на полевых транзисторах широко используются для коммутации различных нагрузок, как маломощных с низким питающим напряжением, так и потребляющих десятки ампер от сети в сотни вольт. В связи с этим возникает необходимость защиты, как самого ключа, так и схемы его управления от аварийных ситуаций.

На сайте уже были статьи, посвященные транзисторным ключам, например, «Транзисторный ключ переменного тока». Этот ключ предназначен для коммутации активной нагрузки в цепи переменного тока. Он имеет оптическую развязку с управляющей схемой, и его схема содержит два КМОП транзистора. Еще одна статья, это «Транзисторный ключ с оптической разрядкой», ключ так же имеет оптическую развязку, собран на биполярных транзисторах и имеет защиту самого ключа от коротких замыканий в цепи нагрузки.

На рисунке 1 приведена схема ключа постоянного тока на КМОП транзисторе с гальванической развязкой и защитой от превышения тока нагрузки.

Гальваническая развязка между схемой управления и самим ключом осуществляется с помощью транзисторного оптрона U1. В качестве этого оптрона можно применить PC817, TLP521, РС120 и т.д.

В качестве переключающего транзистора используется полевой транзистор с n-каналом. Его тип зависит от нужного вам максимального тока и рабочего напряжения нагрузки. Подобрать необходимый транзистор можно из таблицы, размещенной в статье «Полевые транзисторы International Rectifier.»

Работа схемы ключа

В исходном состоянии, когда на входе оптрона отсутствует напряжение управления, светодиод не включен, транзистор оптрона закрыт. При таких условия ключевой транзистор VT3 будет открыт, так как на его затворе будет присутствовать положительное напряжение, поступающее с +Uпит через резистор R2. Стабилитрон VD1 необходим в тех случаях, если напряжение пинания Uпит более 20В. Двадцать вольт, это максимально допустимое напряжение затвор-исток большинства полевых транзисторов. Естественно, что если Uпит менее двадцати вольт, то этот стабилитрон из схемы можно исключить. Транзисторы VT1 и VT2, это не что иное, как аналог тиристора. Пока ток нагрузки находится в нужных пределах, эти транзисторы закрыты и не оказывают на работу ключа никакого значения. Как только ток, протекающий через ключевой транзистор VT3 и Rдт – датчик тока, будет возрастать, будет увеличиваться и падение напряжения на датчике тока Rдт. А это приведет к возникновению открывающего тока через переход база – эмиттер n-p-n транзистора VT1. Это приведет к возникновению тока коллектора этого транзистора, часть которого начнет протекать через переход база – эмиттер p-n-p транзистора VT2. Значит, начнет открываться и транзистор VT2. Большая часть тока коллектора этого транзистора начнет протекать через переход база-эмиттер, уже открывающегося транзистора VT1. Таким образом, возникает лавинообразный процесс открывания обоих транзисторов, обеспечивающий быстрое закрывание ключевого транзистора, путем шунтирования его затвора с истоком. В таком состояния схема может находиться сколько угодно долго. Вывести ее в рабочее состояние можно выключением напряжения питания или замыканием на короткое время эмиттеров транзисторов VT1 и VT2, при условии, что была устранена причина возникновения аварии. Так обеспечивается защита ключевого транзистора. Величину тока срабатывания защиты устанавливают с помощью резистора Rдт. Чем меньше величина этого резистора, чем выше значение тока срабатывания защиты.

Номинал этого резистора можно приблизительно рассчитать по формуле:Rдт = 0,65/Iз ; где Iз – величина тока защиты. 0,65 – это приблизительно пороговое напряжение открывания биполярных кремниевых транзисторов.

Например, при токе защиты 6,5А, величина резистора датчика тока будет примерно равна 0,65/6,5 = 0,1 Ом. Здесь не учитывается падение напряжения на резисторе R4.

Скачать статью

Скачать “moshhnyj-klyuch-postoyannogo-toka-na-polevom-tranzistore” moshhnyj-klyuch-postoyannogo-toka-na-polevom-tranzistore.rar – Загружено 176 раз – 26 KB

ВСПОМНИМ ЭЛЕКТРОТЕХНИКУ

Источники электропитания разделяются на источники ЭДС и источники тока. Идеализированный источник ЭДС обладает внутренним сопротивлением равным нулю, напряжение на его выходе равно ЭДС и не зависит от выходного тока, обусловленного нагрузкой. Идеализированный источник тока обладает двумя бесконечно большими параметрами: внутренним сопротивлением и ЭДС, которые связаны постоянным отношением – током. При возрастании сопротивления нагрузки возрастает ЭДС, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.
      Существующие источники тока поддерживают ток на требуемом уровне в ограниченном диапазоне напряжения, создаваемого на нагрузке и в небольшом диапазоне сопротивления нагрузки. Идеализированный источник тока рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Одним из важных параметров любого источника тока, является диапазон сопротивления нагрузки. В реальности обеспечить ток в диапазоне сопротивления нагрузки от нуля до бесконечности невозможно и ненужно. К сопротивлению нагрузки прибавляются сопротивления контактов разъемов, проводов, сопротивление других элементов, следовательно, нагрузка с нулевым сопротивлением не существует. Бесконечно большое сопротивление означает, что нагрузка отсутствует и ток не протекает, напряжение на выходных клеммах источника тока равно максимальному значению. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и выйти на режим работы с номинальным сопротивлением нагрузки. Свойство источника тока обеспечить постоянный ток независимо от сопротивления нагрузки является весьма ценным, благодаря этому свойству существенно повышается надежность системы, в которой он применен. На практике источник тока – прибор, имеющий в своем составе источник ЭДС. Лабораторный блок питания, аккумулятор, солнечная батарея все это источники ЭДС, поставляющие электроэнергию потребителю. Последовательно с источником ЭДС включается стабилизатор или ограничитель тока. Выход этой группы последовательно соединенных приборов рассматривается как источник тока, применяющийся для питания электродвигателей, в системах гальванического нанесения покрытий на металлах, создания постоянных магнитных полей, питания обычных, сверхярких, лазерных светодиодов и многих других целей.
Простейший источник тока можно создать, используя диодный ограничитель тока. Величина ограничения тока и точность ограничения соответствуют документации, опубликованной фирмой изготовителем.

Оцените статью:
Оставить комментарий
Adblock
detector