Что такое индуктивность, её определение и единица измерения
Содержание [убрать]
Назначение и устройство
В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.
Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.
Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.
В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.
Измеритель индуктивности для мультиметра
Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.
Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.
Понятие индуктивности единицы измерения
Индуктивность — это физическая (электрическая) величина, которая характеризует магнитные свойства электрической цепи. Как известно электрический ток, протекающий через проводящий контур, создает вокруг него магнитное поле. Это происходит потому, что ток изначально несет в себе энергию. Проходя через проводник, он частично отдает ее, и она превращается в энергию магнитного поля. Индуктивность, по сути, является коэффициентом пропорциональности между протекающим током и возникающим при этом магнитным полем.
Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода. Это один из самых обсуждаемых электрических компонентов на форумах любителей электроники.
Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).
Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца – знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).
Проведение замеров индуктивности
После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:
- Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
- Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
- В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.
При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.
В светильниках
В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.
Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.
Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.
Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.
ИНДУКТИВНОСТЬ
Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф
B), индукция пропорциональна силе тока в проводнике (B
I), следовательно магнитный поток пропорционален силе тока (Ф
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.
Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:
где Ф — магнитный поток через контур, I — сила тока в контуре.
Единицы измерения индуктивности в системе СИ:
Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
Индуктивность взаимная — величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2).
Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:
Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.
Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.
Из законов Ома следует, что напряжение на обмотке равно
(1)
где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда
Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:
(2)
Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз = w1/w2 = 1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.
Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником
часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен
Проверка приборов низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
- Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
- Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
- Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
- Измерение индуктивности обмотки.
- Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Диагностика дросселя.
Приложение
Прежде всего, рассмотрим зависимость от времени тока в LR цепи. Как известно, она имеет следующий вид:
(1) |
где
– максимальное значение, к которому в пределе стремится ток i. При использованных в схеме номиналах компонентов обвязки NE555, в положении переключателя, соответствующем пределу измерений 5 мГн, tON ≈ 20 мкс. При этом максимальное возможное значение отношения R/L равно 2.500/0.005 = 500,000. Таким образом, мы видим, что при t = tON значение экспоненты в выражении (1) практически равно нулю, так как
Это позволяет считать, что i = i при t = tON.
Далее рассмотрим спад тока в течение времени tOFF. Зависимость тока от времени t описывается следующим выражением:
(2) |
Поскольку tOFF ≈ tON, из аналогичных рассуждений следует, что i = 0 при t = tOFF. Графики нарастания/спада тока в LR цепи приведены на Рисунке 2.
Рисунок 2. | Временная диаграмма изменения тока при различных значениях LX (1…5 мГн), R = 2.5 кОм. |
Временная диаграмма на Рисунке 2 ясно показывает, что в конце интервала tON ток достигает максимума, а в конце tOFF – нуля. Средний ток через измеритель можно рассчитать как
(3) |
(4) |
Мы видим, что средний ток прямо пропорционален значению индуктивности LX. В связи с тем, что выполнение необходимого соотношения tOFF ≈ tON обеспечивается только значениями сопротивлений R1 и R2, для переключения диапазонов измерения можно изменять емкость подключенного к NE555 конденсатора. Чтобы расширить диапазон измерений вдвое достаточно просто удвоить емкость конденсатора.
Индуктивность обладает активным сопротивлением, зависящим от длины и диаметра провода. Чтобы учесть эту составляющую, (4) можно модифицировать следующим образом:
(5) |
или
(6) |
Как видим, по существу, индуктивность теперь оказалась умножена на коэффициент
Практически это означает, что пиковый ток i, протекающий через индуктивность, уменьшился до величины iR/(R+RLx).
Чтобы преобразовать (4) в (6) и учесть активное сопротивление индуктивности, R в знаменателе (4) мы заменили на (R+RLx), а затем числитель и знаменатель домножили на R и привели выражение к виду (6).
RLx можно измерить отдельно с помощью омметра. Значение R известно, и в нашей конструкции оно равно 2.5 кОм. Заметим, что заменив это сопротивление на 5 кОм, диапазон измерений 0…5 мГн можно расширить до 0…10 мГн. При этом характер временных диаграмм никак не изменится, но пиковый ток i уменьшится вдвое.
Возможно, для получения правильных результатов измерения величину сопротивления R придется слегка скорректировать. Фактическая индуктивность равна измеренной индуктивности, умноженной на величину, обратно пропорциональную упоминавшемуся выше коэффициенту, т.е.
. |
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ LC200A
Основные характеристики измерителя емкости конденсаторов и индуктивности | |
Малый диапазон измерения емкости | 0,01 пФ – 10 мкФ , точность измерения: 5% |
Больший диапазон измерения ёмкости | 1 мкФ – 100 мФ, точность измерения: 5% |
Разрешение емкости | 0,01 пФ |
Малый диапазон измерения индуктивности | 0,001 мкГн – 100 мГн, точность измерения: 5% |
Больший диапазон измерения индуктивности | 0,001 мГн – 100 Гн, точность измерения: 1% |
Разрешение индуктивности | 0,001 мГн |
Диапазон измерения сопротивления | 0,1 Ом – 50 МОм |
Частота измерения |
малый диапазон: 500 кГц большой диапазон: 500 Гц — 50 кГц |
Автоотключение | есть, после 5 минут бездействия |
Функциональные кнопки |
Zero — обнуление показаний; Hi.C — больший диапазон измерений ёмкости (по умолчанию установлен малый); Hi.L — больший диапазон измерений индуктивностей (по умолчанию установлен малый); L/C — выбор режима измерения ёмкости или индуктивности; Func — выбор функции. |
Общие характеристики | |
Дисплей | LCD — 1602, 4-х разрядный дисплей с подсветкой |
Питание | DC 5 В (5 батареек типа AA или mini USB, или блок питания) |
Габариты | 150 мм х 89 мм х 59 мм |
Вес прибора | 198 г |
Комплектация |
L/C-измеритель LC100-A – 1 шт щупы – 2 шт адаптер питания – 1 шт USB кабель – 1 шт |
Внимание! Перед применением прибора, его необходимо откалибровать. Для этого зажмите кнопку Zero и дождитесь появления сообщения «».. Перед каждым новым измерением, обнуляйте прибор с помощью зажатия кнопки «Zero», до появления сообщения «Calculating…ОК».
Перед каждым новым измерением, обнуляйте прибор с помощью зажатия кнопки «Zero», до появления сообщения «Calculating…ОК».
Устройство катушки
Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.
Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.
Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:
e = — dψ / dt
В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).
Интересно почитать: инструкция как прозвонить транзистор.
Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.
1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.
Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп
ψ= ψси + ψвп
Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:
e = eси + eвп,
тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.
Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.