Измерение электрического сопротивления постоянному току

Измерение значения сопротивления резисторов

Резистором называется электронный компонент с фиксированным или изменяемым значением электрического сопротивления. Это простейший радиоэлемент, единственной функцией которого является сопротивление электрическому току. Потребность в проверке резистора может возникнуть, например, при ремонте автомобиля или бытовой техники. Зная его номинал, можно установить пригодность элемента для дальнейшего использования.

Основными неисправностями резистора бывают: нарушение контакта между корпусом резистора и выводами или выгорание токопроводящего слоя. В результате значения сопротивления могут выйти из параметров либо уйти в бесконечность (обрыв). Иногда подозрения в исправности резистора могут возникнуть по его внешнему виду – потемнение корпуса, но так бывает не всегда. Да и потемнение резистора ещё не говорит о неисправности, а сигнализирует о его, в какой-то момент времени, перегреве. В любом случае не помешает проверить резистор мультиметром.

Чтобы измерить сопротивление резистора, надо прикоснуться наконечниками щупов к противоположным выводам этого элемента, предварительно установив переключатель на нужный диапазон, и снять показания на экране. Чтобы дать заключение о его исправности, нужно сравнить эти показания с маркировкой на корпусе сопротивления. К сожалению, надписи на корпусе резистора сделаны не в явной форме и неспециалисту разобраться с ними самостоятельно не так просто, но здесь на помощь может прийти соответствующий справочник или интернет.

Величины сопротивлений резисторов регламентированы. Отличия от номинала (разброс) в процентном отношении зависит от класса точности и может составлять от 0.1% у высокоточных до 20%.

Маркировка зарубежных резисторов выполнена в виде цветных колец различной ширины, опоясывающих корпус. В интернете также можно найти таблицы, по которым её можно расшифровать либо воспользоваться калькулятором цветовой маркировки в режиме online.

Проверка сопротивления резистора неизвестного номинала

Если сопротивление резистора неизвестно, лучше поставить переключатель на верхний предел чувствительности, например, 2 МОм и, поворачивая рукоятку переключателя вправо, найти нужный диапазон. В принципе, при измерении сопротивления, порядок не так важен. Если поставить минимальную чувствительность, на экране появится единица, вращая рукоятку влево, также можно найти нужный диапазон.

И всё-таки правильнее поступать так, как сказано в первом случае. Ведь при измерении напряжения или тока порядок важен, и можно вывести прибор из строя, поступая, как сказано во втором способе. Лучше сразу привыкать к определённой, универсальной последовательности действий.

Следует быть аккуратным при измерениях, и не касаться руками неизолированных частей щупов, иначе, вместо резистора, можно измерить сопротивление собственного тела.

Измерение сопротивления мультиметром. Переменные резисторы

Переменный или подстроечный резистор имеет, по сравнению с обычным, ещё один подвижный контакт (бегунок). Распространённой неисправностью такого радиоэлемента, является плохой контакт, или отсутствие контакта бегунка с подложкой. Поэтому при проверке такого резистора, необходимо проверить не только сопротивление подложки, но и контакт бегунка с подложкой.

Сделать надо следующее:

  1. Установить переключатель в сектор измерения сопротивления Ω, выбрать нужный диапазон в зависимости от номинала резистора.
  2. Одним щупом встать на подложку с любой стороны, другим — на подвижный контакт. Если плавно перемещать бегунок, также плавно должны изменяться показания прибора.

Если значения сопротивления на дисплее не меняются, или изменяются скачкообразно, значит, резистор неисправен. Многим, наверное, знаком неприятный характерный треск при изменении громкости на старой видео или аудиоаппаратуре. Он как раз и указывает на плохой контакт бегунка и подложки. Конечно, на современных бытовых приборах и аппаратуре сейчас в основном применяется электронная регулировка, но можно встретить и механические регуляторы.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Как пользоваться мегаомметром

Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

Замер сопротивления изоляции электродвигателей мегаомметром

Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

Замер сопротивления изоляции кабелей мегаомметром

Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать место повреждения и расстояние до дефекта. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

Классификация и принцип действия

Классификация

Омметр

  • По исполнению омметры подразделяются на щитовые, лабораторные и переносные
  • По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые

Магнитоэлектрические омметры

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе равна: I = U/(r + rx), где U — напряжение источника питания; r — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).

Согласно этой формуле, магнитоэлектрический омметр имеют нелинейную шкалу. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля (скорректировать величину r) специальным регулятором на передней панели при замкнутых входных клеммах прибора, для компенсации нестабильности напряжения источника питания.

Поскольку типичное значение тока полного отклонения магнитоэлектрических микроамперметров составляет 50..200 мкА, для измерения сопротивлений до нескольких мегаом достаточно напряжения питания, которое даёт встроенная батарейка. Более высокие пределы измерения (десятки — сотни мегаом) требуют использования внешнего источника постоянного напряжения порядка десятков — сотен вольт.

Для получения предела измерения в единицы килоом и сотни ом, необходимо уменьшить величину r и соответственно увеличить ток полного отклонения измерителя путём добавления шунта.

При малых значениях rx (до нескольких ом) применяется другая схема: измеритель и rx включают параллельно. При этом измеряется падение напряжения на измеряемом сопротивлении, которое, согласно закону Ома, прямо пропорционально сопротивлению, (при условии I=const).

ПРИМЕРЫ: М419, М372, М41070/1

Логометрические мегаомметры

Мегаомметр М1101М

Основой логометрических мегаомметров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

ПРИМЕРЫ: ЭС0202, М4100

Аналоговые электронные омметры

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

ПРИМЕРЫ: Е6-13А, Ф4104-М1

Цифровые электронные омметры

Цифровой омметр Щ34

Микроомметр MOM600A

Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34

Измерения малых сопротивлений. Четырёхпроводное подключение

При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы. 

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими  параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При  этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Условия для измерения

При проведении замеров сопротивления заземления используют методику определения падения вольтажа, амперов. Через проводник пропускают ток необходимой силы и фиксируют изменение. Далее по формуле вычисляют коэффициент противодействия, который равен частному тока на падение напряжения. Такой способ называют методом амперметра-вольтметра.

В качестве измерителя используют обычные бытовые приборы как мультиметр. Для этого создают искусственную цепь из токового (вспомогательного) электрода и заземлителя (потенциального стержня). Таким элементом может выступать обрезок арматуры или металлической трубы. Через них пропускают электричество требуемой величины. В качестве генератора может выступать сварочный аппарат или другие трансформаторы, чьи обмотки не связаны между собой.

Важно! Необходимо создать ток нужной величины, способный преодолеть сопротивление грунта. Потенциальный электрод нужен для фиксации падения напряжения при протекании тока по заземляющему элементу

Его располагают на одинаковом расстоянии от токового электрода и контрольного элемента, но он должен находится в доступной зоне нулевого потенциала. Далее путем расчетов по закону Ома определяют геологическое сопротивление грунта

Потенциальный электрод нужен для фиксации падения напряжения при протекании тока по заземляющему элементу. Его располагают на одинаковом расстоянии от токового электрода и контрольного элемента, но он должен находится в доступной зоне нулевого потенциала. Далее путем расчетов по закону Ома определяют геологическое сопротивление грунта.

Такой способ хорош для применения в частном доме, но бытовой мультиметр не способен вырабатывать необходимое напряжение. А схема будет работать, если по цепи потечет только ток нужного номинала. Поэтому существуют специализированные приборы, которые способны дать точные результаты.

Выше был описан простой способ, состоящий из одного потенциального электрода. Существует также сложный метод, включающий в себя несколько клиньев связанных между собой в одну единую цепь. Проволока между ними формирует контур.

Схема измерения сопротивления

Что такое сопротивление провода изоляции

Сопротивление изоляции — это один из важнейших параметров любых кабелей и проводников. Основано это на том, что все провода в процессе их эксплуатации подвергаются сторонним воздействиям. Помимо внешнего влияния присутствуют также и внутренние: влияние жил одного провода друг на друга, взаимодействие по электромагнитным полям. Все это, так или иначе, приводит к появлению утечек.

Промышленный мегомметр для замера крупных значений сопротивления

Именно поэтому любые электрические и неэлектрические провода создаются с изоляцией, защищающей проводник от внешнего влияния. Среди популярных изоляционных материалов выделяют резину, поливинилхлорид, масло, дерево и бумагу. Используются эти материалы исходя из самого предназначения кабеля. Например, провода, прокладываемые под землей, изолированы сравнительно толстой лентой диэлектрика, а кабеля телекоммуникаций могут быть заключены в простую обертку из алюминиевой фольги.

Старый советский аналоговый стендовый омметр

Важно! Изоляция — это защита жил от воздействия потусторонних факторов, защита жилок друг от друга, от замыкания и от различных утечек. Сопротивление же изоляции это величина сопротивления между жилами провода или между одной из жил и изоляционным слоем

Любой материал со временем эксплуатации стареет и разрушается, что ведет к ухудшению его характеристик и снижению сопротивления изоляции постоянному или переменному току. Характеристика сопротивляемости изоляции указывается на кабеле и нормируется в его ГОСТе. Определяют его в лабораторных условиях при при температуре в 20 градусов.

Произведение измерений сопротивляемости профессиональным мегаомметром

Низкочастотные кабели связи имеют минимальное сопротивление изоляции в 5 Гигаом на километр, а коаксиальные в свою очередь — 10 Гигаом на километр. Измерение и проверку сопротивляемости проводят на регулярной основе мегаомметром: на установках мобильной связи — один раз в 6 месяцев, на объектах повышенной опасности — один раз в 12 месяцев, на других объектах — один раз в три года.

Резистор для повышения сопротивляемости электрической сети

Оцените статью:
Оставить комментарий
Adblock
detector