Электричество

История

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч

ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Майкл Фарадей — основоположник учения об электромагнитном поле

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля ().

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию () и законы электролиза (), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Преимущества резонансной однопроводной системы передачи электроэнергии:

– электрическая энергия передается с помощью реактивного емкостного тока в резонансном режиме,

– несанкционированное использование энергии затруднено,

– снижение расходов на строительство ЛЭП,

– возможность замены воздушных ЛЭП на однопроводниковые кабельные линии,

– существенная экономия цветных металлов, т.к. сечение кабеля в 3-5 раз меньше сечений традиционной трехфазной системы передачи электроэнергии, содержание алюминия и меди в проводах может быть снижено в 10 раз,

– значительное уменьшение радиуса поворота линий, что является весьма важным при прокладке кабелей в городских условиях,

– значительное (до 10 раз) снижение затрат на прокладку кабелей,

– отсутствует межфазное короткое замыкание,

– обеспечивается высокий уровень электробезопасности для окружающей природной среды и человека,

– потери электроэнергии в однопроводной линии малы,

– электроэнергию можно передавать на большие и сверхдальние расстояния,

– в однопроводном кабеле невозможны короткие замыкания и однопроводный кабель не может быть причиной пожара,

– отсутствие необходимости в техническом обслуживании,

– наличие пониженного магнитного поля,

– отсутствие влияния погодных условий,

– не нарушается естественный природный ландшафт,

– отсутствие полосы отчуждения,

– потери в проводах практически отсутствуют (в сотни раз меньше, чем при  традиционном способе передачи электрической энергии).

Обыкновенное чудо природных явлений

Интересно, что тела человека и многих живых существ не просто являются проводниками электрических импульсов, но и способны вырабатывать эту энергию самостоятельно. Показательными примерами являются электрические скаты, миноги и угри, у которых есть специальные отростки в строении туловища, служащие своеобразной накопительной иглой, с помощью которой они поражают жертву разрядом частотой в несколько сотен герц.

Большинство ученых считают, что тело человека подобно электростанции с автономной системой саморегуляции. Бывали случаи, когда люди не только выживали после удара молнией, но и обретали исцеление от болезней и новые способности. Каждый из этих счастливцев обладал сильным природным иммунитетом, вследствие чего удар природного электричества только укрепил их врожденную силу.

В природе есть множество явлений, доказывающих, что электроэнергия — ее неотъемлемая часть и существует повсеместно:

  1. Огненные знаки святого Эльма — знакомы мореплавателям с античных времен. Внешне они похожи на кистеобразные огни свечей нежно-голубого и лилового оттенка, а длина их может достигать одного метра. Появляются в бурю и грозы на шпилях мачт кораблей. Матросы пытались отломить концы мачт и спуститься с факелом вниз, но это никогда не удавалось, поскольку огонь переходил на другие высоко расположенные объекты. Удивительно, что огонь не обжигает руки и холодноват при прикосновении. Мореплаватели считали, что это благодатный знак от святого Эльма о том, что корабль находится под его защитой и благополучно придет в порт. Современные исследования показали, что необычный огонь имеет электрическую природу;
  2. Полярное сияние — в верхних слоях атмосферы накапливается множество мелких элементов, прилетевших из глубин космоса. Они сталкиваются с частицами нижних слоев воздушной оболочки и пылинками с разными полюсами зарядов, результатом чего являются хаотично движущиеся световые вспышки разных цветов. Такое свечение характерно для периода полярной ночи и может длиться несколько суток;
  3. Молнии — изменения в атмосферных потоках вызывают одновременное возникновение льдинок и капель. Сила трения от их столкновения наполняет кучевые облака мощными электрозарядами. От соприкосновения облаков с разноименными зарядами возникает мощный световой выброс в громовых раскатах. Когда нижние слои атмосферы переполнены электрическими зарядами, они могут объединиться в одно целое, и получается шаровая молния, которая движется по довольно низкой траектории и очень опасна, поскольку может взорваться, столкнувшись с живым существом или статичным предметом.

Помимо переменного и постоянного тока, существует еще и статическое электричество, возникающее при нарушении баланса внутри атомов. Синтетическая ткань обладает способностью накапливать его, что выражается небольшими искрами при движении одежды во время переодевания и ощущением укола при касании человека или металла.

https://youtube.com/watch?v=1AWmyGXjIzY

Это весьма неприятные ощущения, к тому же в больших дозах это вредно для здоровья. Статическое излучение исходит и от телевизоров, компьютеров и бытовой техники, электризующих пыль. Поэтому, чтобы сберечь здоровье, необходимо носить одежду из натуральных тканей, не находиться долгое время около электроприборов и почаще делать уборку.

Примеры транспортировки энергии по воздуху

Рассмотренная выше проблема может быть решена путем выбора альтернативного варианта распределения энергии, который мог бы обеспечить гораздо более высокую эффективность, низкую стоимость передачи и избежать хищения энергии. Передача энергии микроволновым излучением является одной из перспективных технологий и может стать достойной альтернативой.

Беспроводной передачей энергии занимался еще Никола Тесла, который показал, что он действительно “отец беспроводной связи”. Никола Тесла первым задумал идею беспроводной передачи энергии и еще в 1891 году продемонстрировал “передачу электрической энергии без проводов”, которая зависела от электропроводности.
В 1893 году Тесла продемонстрировал освещение вакуумных ламп без использования проводов для передачи электроэнергии на Всемирной Колумбийской экспозиции в Чикаго. Башня Уорденклиффа была спроектирована и построена Теслой главным образом для беспроводной передачи электроэнергии, а не телеграфии.

  • В 1904 году дирижабль с двигателем 0,1 лошадиной силы приводился в движение путем передачи мощности через пространство с расстояния не менее 30 метров.
  • В 1961 году была опубликована первая статья, предлагающая микроволновую энергию для передачи энергии, а в 1964 году продемонстрирована модель вертолета с микроволновым питанием, которая получала всю мощность, необходимую для полета от микроволнового луча на частоте 2,45 ГГц из диапазона частот 2,4-2,5 ГГц, который зарезервирован для промышленных, научных и медицинских приложений.
  • Эксперименты по передаче энергии микроволновым излучением без проводов в диапазоне десятков киловатт были проведены в Калифорнии в 1975 году и на острове Реюньон (Индийский океан) в 1997 году.
  • Аналогичным образом, первый в мире самолет без топлива, работающий на микроволновой энергии с земли, был зарегистрирован в 1987 году в Канаде.
  • В 2003 году Центр летных исследований НАСА продемонстрировал модель самолета с лазерным питанием в помещении.
  • В 2004 году Япония предложила беспроводную зарядку электромобилей с помощью микроволновой передачи энергии. Новая компания представила технологию беспроводной передачи энергии на выставке потребительской электроники 2007 года.
  • Исследовательская группа физиков также продемонстрировала беспроводное питание лампочки мощностью 60 Вт с эффективностью 40% на расстоянии 2 м с использованием двух катушек диаметром 60 см.
  • Сейчас уже серийно выпускается беспроводная зарядка для смартфонов и других устройств.
  •  Электромобиль Тесла и другие современные авто уже имеет встроенную беспроводную зарядку для смартфонов и не горами зарядка самого электромобиля.

Концепция беспроводной передачи энергии микроволновым излучением поясняется функциональной блок-схемой. На передающей стороне источник питания преобразует энергию в микроволны которые контролируются электронными управляемыми схемами. Передающая антенна излучает мощность равномерно через свободное пространство к антенне. На приемной стороне антенна принимает передаваемую мощность и преобразует микроволновую мощность в мощность постоянного тока. Передача осуществляется на частоте 2,45 ГГц или 5,8 ГГц. Другие варианты частот – 8,5 ГГц, 10 ГГц и 35 ГГц.

Самая высокая эффективность около 90% достигнута на частоте 2.45 ГГц.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту. Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы)

Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: переменный или постоянный ток. Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику

Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц. Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой. Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в космос. Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Электричество: возникновение тока, история открытия электрических изобретений, фамилии первооткрывателей

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение — все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу — «амперметрами».

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин.

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень.

Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Оцените статью:
Оставить комментарий
Adblock
detector