Производство электроэнергии на гэс: просто о сложном

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Оff-line.

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

Имеют аналогичную конструкцию плюс встроенный стабилизатор. Аккумулятор включается только тогда, когда стабилизатор неспособен справиться со стабилизацией входного напряжения. Его основные недостатки, как и у предыдущего устройства – это наличие промежутка времени, требуемого на переключение режимов работы, и невозможность корректировать частоту сети.

Оnline.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

Бесперебойные источники могут обеспечить кратковременную работу электротехники на протяжении от нескольких минут до суток и используются:

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Бензиновые генераторы.

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Дизельные генераторы.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Ветряные генераторы.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

  *  *  *

2014-2020 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Возобновляемые и невозобновляемые источники энергии

Гладит все, чего касается,А дотронешься – кусается.

Поверчу волшебный круг – И меня услышит друг.

Он с хоботом резиновым,С желудком парусиновым,Как загудит его мотор,Глотает он пыль и сор.

Стоит красивый сундучок,Его не тронешь – он молчок.Но стоит ручку повертеть,Он будет говорить и петь.

     Для людей самый востребованный вид энергии – электричество. Как правило, электричество, которым ты пользуешься дома, вырабатывается путём сжигания топлива, с помощью энергии падающей воды на гидроэлектростанции либо при помощи ядерной реакции. Это и есть источники энергии.

Невозобновляемые (традиционные) источники, которые человек не может воссоздать снова.

Возобновляемые (альтернативные) источники могут быть пополнены.

     К возобновляемым источникам энергии можно отнести источники, работающие на солнечной энергии, энергии ветра, геотермальной энергии, получаемой из недр Земли, энергии биомасс, получаемой из растений, включая древесный уголь, этиловый спирт из зерновых и биодизель из растительного масла. Ну и, конечно, гидроэнергия, получаемая с помощью движения воды.

Подумай!​
  • Используя рисунок, раздели представленные изображения на группы. К какому виду источников энергии они относятся?
  • Что является источником для работы этих объектов?

Виды источников энергии

      Основная часть энергии в нашей стране получается из невозобновляемых источников энергии: ископаемое топливо, каменный уголь, натуральный газ, нефть, мазут.      ​В Послании Главы государства Н.A. Назарбаева народу Казахстана «Казахстан в новой глобальной реальности: рост, реформы, развитие» говорится о начале строительства в Казахстане станций, работающих на урановой руде в г. Курчатове – Восточно-Казахстанской области и в поселке Улькен Алматинской области на берегу озера Балкаш.

Город Курчатов

     В 2015 году были введены в строй 14 проектов возобновляемых источников энергии суммарной мощностью около 120 МВт. Крупнейшей в Средней Азии является солнечная электростанция «Бурное Солар-1» с установленной мощностью 50 МВт, она расположена в Жамбылской области. Вырабатывать электроэнергию будут около 200 тысяч солнечных панелей.

Крупнейшая в Средней Азии солнечная электростанция «Бурное Солар-1»

Мощность электрического тока в цепи

Мощность P{\displaystyle P} электрического тока для участка цепи определяется обычным образом, как производная от работы A{\displaystyle A} по времени, то есть выражением:

P(t)=dAdt=U(t)⋅I(t),{\displaystyle P(t)={\frac {dA}{dt}}=U(t)\cdot I(t),}

Это наиболее общее выражение для мощности в электрической цепи.

С учётом закона Ома

U=I⋅R{\displaystyle U=I\cdot R}

электрическую мощность, выделяемую на сопротивлении R{\displaystyle R}, можно выразить как через ток

P=I(t)2⋅R,{\displaystyle P=I(t)^{2}\cdot R,}

так и через напряжение:

P=U(t)2R.{\displaystyle P={{U(t)^{2}} \over R}.}

Соответственно, работа (выделившаяся теплота) является интегралом мощности по времени:

A=∫P(t)dt=∫I(t)2⋅Rdt=∫U(t)2Rdt.{\displaystyle A=\int P(t)\,dt=\int I(t)^{2}\cdot R\,dt=\int {{U(t)^{2}} \over R}\,dt.}

Получение электроэнергии из соленой воды

Для получения электроэнергии напрямую из солёной воды используется такое явление как осмос. Суть процесса состоит в том, что солёную морскую воду смешивают с пресной. При этом энтропия жидкости увеличивается и в результате извлекается энергия. После чего эта энергия направляется на вращение турбины генератора, который уже, в свою очередь, и вырабатывает электрическую энергию.

О перспективах этого метода говорить я думаю излишне. Запасы что морской что пресной воды на Земле практически неисчерпаемы. И уже построена первая электростанция использующая этот принцип. Создана она компанией Statkraft в Норвегии. Так что лиха беда начала.

Газотурбинные установки.

ГТУ довольно широко применяются на малых электростанциях, принадлежащих муниципалитетам или промышленным предприятиям, а также в качестве «пиковых» (резервных) блоков – на крупных электростанциях. В камерах сгорания ГТУ сжигается мазут или природный газ, и высокотемпературный газ высокого давления воздействует на рабочие колеса турбины примерно так же, как и пар в паровой турбине. Вращающийся ротор газовой турбины приводит во вращение электрогенератор, а также воздушный компрессор, который подводит к камере сгорания воздух, необходимый для горения. Примерно 2/3 энергии поглощается компрессором; горячие выхлопные газы после турбины выводятся в дымовую трубу. По этой причине КПД газотурбинных установок не очень высок, но зато малы и капитальные затраты в сравнении с паровыми турбинами той же мощности. Если ГТУ используется на протяжении лишь нескольких часов в году в периоды пиковой нагрузки, то высокие эксплуатационные расходы компенсируются низкими капитальными, так что применение ГТУ для обеспечения до 10% полной выходной мощности электростанции оказывается экономически целесообразным.

В комбинированных парогазотурбинных энергетических установках (ПГУ) высокотемпературные выхлопные газы газовой турбины направляются не в дымовую трубу, а в котел-утилизатор, который вырабатывает пар для паровой турбины. КПД такой установки выше, чем у лучшей паровой турбины, взятой отдельно (около 36%).

ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ

Электроэнергия, вырабатываемая генератором, отводится к повышающему трансформатору по массивным жестким медным или алюминиевым проводникам, называемым шинами. Шина каждой из трех фаз (см. выше) изолируется в отдельной металлической оболочке, которая иногда заполняется изолирующим элегазом (гексафторидом серы).

Трансформаторы повышают напряжение до значений, необходимых для эффективной передачи электроэнергии на большие расстояния. См. также ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ.

Генераторы, трансформаторы и шины соединены между собой через отключающие аппараты высокого напряжения – ручные и автоматические выключатели, позволяющие изолировать оборудование для ремонта или замены и защищающие его от токов короткого замыкания. Защита от токов короткого замыкания обеспечивается автоматическими выключателями. В масляных выключателях дуга, возникающая при размыкании контактов, гасится в масле. В воздушных выключателях дуга выдувается сжатым воздухом или применяется «магнитное дутье». В новейших выключателях для гашения дуги используются изолирующие свойства элегаза.

Для ограничения силы токов короткого замыкания, которые могут возникать при авариях на ЛЭП, применяются электрические реакторы. Реактор представляет собой катушку индуктивности с несколькими витками массивного проводника, включаемую последовательно между источником тока и нагрузкой. Он понижает силу тока до уровня, допустимого для автоматического выключателя.

С экономической точки зрения, наиболее целесообразным, на первый взгляд, представляется открытое расположение большей части высоковольтных шин и высоковольтного оборудования электростанции. Тем не менее все чаще применяется оборудование в металлических кожухах с элегазовой изоляцией. Такое оборудование необычайно компактно и занимает в 20 раз меньше места, нежели эквивалентное открытое. Это преимущество весьма существенно в тех случаях, когда велика стоимость земельного участка или когда требуется нарастить мощность существующего закрытого распредустройства. Кроме того, более надежная защита желательна там, где оборудование может быть повреждено из-за сильной загрязненности воздуха.

Для передачи электроэнергии на расстояние используются воздушные и кабельные линии электропередачи, которые вместе с электрическими подстанциями образуют электросети. Неизолированные провода воздушных ЛЭП подвешиваются с помощью изоляторов на опорах. Подземные кабельные ЛЭП широко применяются при сооружении электросетей на территории городов и промышленных предприятий. Номинальное напряжение воздушных ЛЭП – от 1 до 750 кВ, кабельных – от 0,4 до 500 кВ.

Скорость распространения элек­тромагнитной энергии

Электромагнитная энергия распространяется в пространстве не мгновенно, а с некоторой скоростью. Для определения этой скорости в пространстве, в котором распространяется энергия, выделим энергетическую трубку (рис. 4.2). Форма трубки должна быть такой, что­бы ее боковая поверхность совпадала с направлением вектора Пойнтинга. То есть на боковой поверхности трубки нормальная составляющая векто­ра Пойнтинга должна быть равна нулю.

Рис. 4.2. Энергетическая трубка

За время Δt через поперечное сечение труб­ки ΔS проходит энергия ΔW. Она сосредоточена в объеме ΔV между сечениями трубки ΔS и ΔS1. Расстояние между этими сечениями равно Δl. При этих условиях скорость распространения энергии можно описать формулой:

(4.20)
где vэ – скорость распространения энергии, м/с;
  1 — орт, показывающий направление распрост­ранения энергии

Энергию ΔW, распространяющуюся вдоль трубки, можно определить интегрированием плотности энергии по площади сечения трубки и умножением результата на ее длину:

(4.21)
где ΔS’ — поперечное сечение трубки, расположенное между ΔS и ΔS1

Положение этого сечения не важно, так как через любое сечение трубки за время Δt проходит вся энергия ΔW. При достаточно малых промежутках времени Δt вектор Пойнтинга можно считать неизменным, поэтому, кроме равенства (4.21) должно выполняться еще одно:

(4.22)

Для того чтобы определить скорость переноса энергии надо разделить Δl на Δt и устремить Δt к нулю. Для этого надо формулу (4.22) разделить на формулу (4.21), выделить искомое отношение и выполнить предельный переход:

(4.23)

Если векторы Е и Н постоянны в сечении ΔS, постоянными будут и вектор Пойнтинга П и объемная плотность энергии w.В этом случае соотношение (4.23) можно упростить, основываясь на том, что направ­ление вектора Пойнтинга совпадает с направлением распростра­нения энергии:

(4.24)

Следовательно, скорость переноса энергии электромагнитным полем можно вычислить, разделив плотность потока энергии (вектор Пойнтинга) на плотность энергии.

Что такое КПД

Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.

Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.

Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство. Остальная часть идет на нагревание чайника и воды в нем. Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.

Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.

Энергетика сегодня

В настоящее время промышленно развитые страны производят основную часть электроэнергии централизованно, на больших электростанциях, таких как тепловые электростанции, атомные электростанции, гидроэлектростанции. Мощные электростанции благодаря «эффекту масштаба» имеют превосходные экономические показатели и обычно передают электроэнергию на большие расстояния. Место строительства большинства из них обусловлено множеством экономических, экологических, географических и геологических факторов, а также требованиями безопасности и охраны окружающей среды. Например, угольные станции строятся вдали от городов для предотвращения сильного загрязнения воздуха, влияющего на жителей. Некоторые из них строятся вблизи угольных месторождений для минимизации стоимости транспортировки угля. Гидроэлектростанции должны находиться в местах с достаточным энергосодержанием (значительный перепад уровней на расход воды).

Ветрогенератор, Испания

Низкое загрязнение окружающей среды — критическое преимущество комбинированных энергостанций, работающих на природном газе. Это позволяет им находиться достаточно близко к городу для централизованного теплоснабжения.

Поэтому в традиционной энергетике по функциональному назначению и территориальному расположению можно четко выделить три сегмента:

  1. Центры производства электроэнергии
  2. Линии электропередачи большой мощности
  3. Зоны потребления электроэнергии и местные распределительные сети

Атомные и тепловые электростанции, кроме электрической энергии, производят значительное количество тепла. В отличие от электроэнергии, тепловую энергию невозможно передавать на большие расстояния из-за резкого возрастания потерь с ростом расстояния. Одновременно, из-за указанных выше факторов, многие энергостанции слишком далеко расположены, чтобы использовать их побочное тепло для обогрева общественных и жилых зданий. В результате неиспользованная на самой станции тепловая энергия рассеивается в окружающей среде (теряется без полезного применения).

Оцените статью:
Оставить комментарий