Эффект холла

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.}
где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},}
где n{\displaystyle n} — концентрация носителей заряда. Тогда
E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их знак заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.}
где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},}
где n{\displaystyle n} — концентрация носителей заряда. Тогда
E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их знак заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Устройство и принцип работы холловского двигателя:

Холловский двигатель (двигатель на основе эффекта Холла) – это одна разновидностей электростатического ракетного двигателя, в котором используется эффект Холла. Двигатели на основе эффекта Холла используются на космических аппаратах с 1972 года.

В основе принципа работы данного двигателя лежит эффект Холла, открытый в 1879 г. Эдвином Холлом (Edwin H. Hall). Он заключается в том, что в проводнике, в котором созданы взаимно перпендикулярные электрическое и магнитное поля, возникает электрический ток (называемый холловским) в направлении, перпендикулярном обоим этим полям. Иными словами, если электрическое и магнитное поля имеют направления соответственно по осям X и Y, то электрический (холловский) ток имеет направление вдоль оси Z.

Холловский двигатель состоит из кольцевой камеры. Иными словами, камера двигателя выполнена в форме кольца (цилиндра). С одной стороны в камеру подаётся рабочее тело, с другой стороны происходит истекание плазмы. Внутри двигателя располагается анод (положительный электрод), катод (отрицательный электрод) расположен снаружи двигателя. По внешней стороне кольца располагаются магниты.

Между анодом и катодом создается разность потенциалов. В кольцевую камеру подаётся рабочее тело (например, ксенон). Разряд между анодом и катодом ионизирует рабочее тело, отрывая электроны от нейтральных атомов газа. Под действием электростатического поля положительные ионы газа (плазма) разгоняются в осевом направлении – в направлении выходного отверстия цилиндрического двигателя. На выходе из двигателя происходит нейтрализация положительного заряда плазмы электронами, эмитируемыми с катода. Истечение положительных ионов из выходного отверстия создает тягу.

В радиальном направлении действует магнитная сила, которая в соответствии с эффектом Холла приводит к появлению электрического тока, движущегося в азимутальном направлении (т.е. вокруг центрального электрода, оси двигателя). Холловский ток создается движением электронов в электрическом и магнитном полях.

В холловском двигателе тяга создается также с помощью холловского тока, пересекающего радиальное магнитное поле. Их взаимодействие заставляет электроны обращаться вокруг оси двигателя. Эти электроны выбивают электроны из атомов ксенона, создавая ионы ксенона, которые осевое электрическое поле ускоряет в направлении выходного отверстия двигателя. Электроны холловского тока под действием силы Лоренца (возникающей в результате взаимодействия приложенного радиального магнитного поля с электрическим холловским током) создают дополнительную тягу и вырываются наружу в выходное отверстие вместе с положительными ионами.

Двигатель на основе эффекта Холла позволяет получить более высокую плотность тяги, более высокие значения расхода рабочего тела, и, как следствие, более высокую тягу двигателя, чем ионный двигатель, поскольку в истекающем потоке содержатся и положительные ионы, и электроны, что предотвращает накопление объемного заряда, уменьшающего напряженность ускоряющего электрического поля.

В зависимости от располагаемой мощности скорости истечения рабочего тела могут составлять от 10 до 50 км/с.

Устройство и примеры использования

Простейшая система с датчиком Холла включает в свой состав следующие элементы:

  1. Постоянный магнит (его функция – создание магнитного поля).
  2. Подвижный ротор с лопастями или зубцами.
  3. Особый стержень из магнитного материала (магнитопровод).
  4. Пластиковый корпус.

Помимо этого, техническая характеристика датчика предусматривает применение микросхем, задействованных в измерительном процессе.

Понять принцип работы этого прибора удается, если ознакомиться с подробной схемой включения датчика Холла в зоне проведения измерений. Схема подключения и суть работы сенсора может быть представлена следующим образом:

  • В зазоре, образованном половинками магнитопровода, перемещаются металлические лопасти ротора.
  • При их вращении происходит периодическое шунтирование магнитного потока.
  • Встроенной микросхемой предусмотрено определение нулевого показателя индукции (в эти моменты напряжение на ее выходе максимально).
  • По частоте таких всплесков, подсчитываемой той же микросхемой, судят о скорости вращения контролируемого объекта (двигательного вала в мотоцикле, например).

Чтобы этот процесс протекал нормально – при включении сенсора в измерительную цепь должна учитываться цоколевка данного образца (она бывает разной).

Обобщая рассмотренную схему, следует предположить, что датчики этого класса способны измерять скорость вращения коленвала любого движущегося средства. Универсальность сенсора, не исключающая возможности его установки в скутере, например, позволяет применять датчик Холла не только в сложных технических устройствах, но и в обычной бытовой технике.

Применение в системе зажигания и стиральных машинах

При использовании датчика Холла в системе зажигания автомобиля с его помощью удается фиксировать момент размыкания трамблера. В данном случае он работает как аналоговый преобразователь, определяющий мгновения прерывания бортового питания. На этом же принципе базируется его применение в рабочих модулях стиральной машины, что позволяет по скорости вращения барабана определять увеличение веса белья.

Датчики Холла устанавливаются и в некоторых образцах измерительной аппаратуры. Чаще всего ими комплектуются бесконтактные клещи, применяемые для измерения тока в проводниках. Встроенный прибор реагирует на изменение электромагнитного поля, образующегося вокруг силового кабеля. Кроме того, он подходит для ручки газа электровелосипеда, позволяя контролировать угол ее поворота.

В бытовых условиях

В клавиатурах компьютеров эти приборы обеспечивают бесконтактный способ снятия информации. Сенсор, входящий в состав кулера бытового ПК, способен управлять полярностью обмоток ротора, то есть менять направление его вращения.

При использовании такого элемента в смартфоне, в частности, он обеспечивает выключение устройства при помещении его в чехол с «магнитной» застежкой.

Рассматривая области применения датчики Холла простыми словами можно сказать, что его использование в технической сфере практически ничем не ограничено. В электронном конструкторе Ардуино, например, имеется набор с таким датчиком, позволяющий на практике проиллюстрировать эффект Холла.

Это не единственный пример его использования в целях обучения, помогающий начинающим пользователям понять, как подключить и использовать сенсоры полевых структур.

В заключение отметим, что к недостаткам датчиков Холла относят их чувствительность к электромагнитным помехам, нередко возникающим в рабочих цепях. Кроме того, использование сложных электронных модулей в конструкции прибора в какой-то мере влияет на его надежность, несколько снижая ее. Эти минусы сенсора не рассматриваются как его дефекты, а просто учитываются при работе с аппаратурой.

Теперь вы знаете, что такое датчик Холла, как он работает и зачем нужен. Надеемся, предоставленная информация была для полезной и интересной!

Материалы по теме:

  • Что такое тензодатчик и как он устроен
  • Для чего нужны концевые выключатели
  • Чем отличается переменный ток от постоянного

Опубликовано:
09.07.2019
Обновлено: 09.07.2019

От Лоренца к Холлу

Эффект Холла является продолжением силы Лоренца, которая описывает силу, действующую на заряженные частицы – такие как электрон – движущиеся в магнитном поле. Если магнитное поле направлено перпендикулярно направлению движения электронов, на электрон действует сила, которая перпендикулярна и направлению движения, и направлению магнитного поля.

Эффект Холла относится к ситуации, в которой сила Лоренца действует на электроны, движущиеся в проводнике, так что разница потенциалов – или другими словами, напряжение – возникает между двумя сторонами проводника.

Следует отметить, что стрелки на втором рисунке показывают направления протекания обычного тока, а это означает, что электроны двигаются в противоположном направлении. Направление силы Лоренца определяется правилом правой руки, учитывающим направление движения электрона относительно магнитного поля. На первом рисунке электрон движется вправо, а сила Лоренца направлена вверх. На втором рисунке электроны движутся влево, а сила Лоренца направлена вниз, и, таким образом, отрицательный заряд накапливается на нижней стороне проводника. Результатом является разность потенциалом, которая возникает между верхней и нижней кромками проводника, с верхним краем более положительным по сравнению с нижним. Эта разность потенциалов называется напряжением Холла:

\

Эта формула, которая применяется к токопроводящей пластине, говорит нам, что напряжение Холла зависит от величины тока (I), протекающего через проводник, от магнитной индукции (B), от элементарного заряда электрона (e), количества электронов в единице объема (ρ) и от толщины пластины (t).

Датчик Холла в телефоне – что это такое и как его определить

В настоящее время смартфоны и прочая электронная техника оборудованы таким огромным количеством разнообразнейших сенсоров и считывателей, что о большинстве из них многие пользователи не только ничего не знают, но и даже никогда не слышали. Один из таких – датчик Холла. Что это и зачем нужен в смартфонах?

Что такое датчик Холла

В 1879 году Эдвином Холлом был открыт эффект, позднее получивший его имя. Суть его заключается в том, что напряжение проводника с током, помещенного в магнитное поле, меняется, причем кратно силе этого поля. Данный эффект используется в одноименном контроллере.

Таким образом, датчик Холла – прибор, позволяющий выявить наличие и характеристики магнитного поля рядом с устройством, на которое он установлен. Обычно представляет собой небольшую микросхему, которая при наличии поля подает сигнал на контроллер, а при его отсутствии – не действует.

Применение в смартфонах

Несмотря на сложное и не понятное для многих название, есть множество ответов на вопрос для чего нужен датчик Холла в смартфоне. В этом ему помогает его расположение – непосредственно за экраном на передней части смартфона. Это позволяет использовать его для бесконтактного управления устройством при помощи различных жестов и других предустановленных возможностей.

От программного обеспечения, установленного на телефоне, зависит работа сенсора – более дешевые модели не могут распознавать жесты, в то время как флагманские, наоборот, поддерживают довольно большое их количество. В основном, чем больше дисплей и размеры аппарата, тем больше возможностей для сенсора будет реализовано, так как он занимает довольно много места.

Кроме того, датчик Холла обладает и другими полезными функциями:

  • Карманный электронный компас – анализ магнитных полей помогает определять направление на север при помощи смартфона, а также азимут и направление угла наклона смартфона;
  • Функционирование и взаимодействие с аксессуарами – чехлы-книжки могут сами блокировать телефон, в этом случае в них вшит небольшой магнит прямо над датчиком;
  • Автоматический поворот экрана – контроллер датчика определяет изменения смартфона в пространстве, поэтому именно это устройство отвечает за ориентацию дисплея.

Виды датчиков

Существует несколько разновидностей датчиков Холла, каждый из которых отличается особенностями работы и реакций на полюса магнитов:

  • Униполярные. Данный тип встраивается в небольшие процессоры, смартфоны и планшетные компьютеры, сенсор реагирует только на один полюс магнита и выдает сигнал при поднесении его к устройству;
  • Биполярные. Используются в авиа- и ракетостроении, реагируют на оба магнитных полюса за тем лишь исключением, что для того, чтобы отключить датчик, необходимо поднести к нему противоположный полюс магнита;
  • Омниполярные. Данный тип походит на униполярные сенсоры, но сам контроллер при этом засчитывает сигнал как северного, так и южного магнитных полюсов, поэтому считается более чувствительным, хоть и занимает больше места.

Как определить наличие датчика в смартфоне

Для того, чтобы определить, предустановлен ли датчик Холла в конкретной модели, можно воспользоваться несколькими путями:

Таким образом, датчик Холла – универсальное и полезное устройство, которое применяется повсеместно для контроля за наличием и свойствами магнитного поля. Он позволяет расширить функционал смартфона.

Больше о том, что такое датчик Холла и зачем он нужен в смартфоне можно узнать на видео ниже:

Квантовый эффект Холла

Впервые необычный (англ. unconventional) квантовый эффект Холла наблюдали в работах, где было показано, что носители в графене действительно обладают нулевой эффективной массой, поскольку положения плато на зависимости недиагональной компоненты тензора проводимости соответствовали полуцелым значениям холловской проводимости ν=±(|n|+12){\displaystyle \nu =\pm (|n|+1/2)} в единицах 4e2h{\displaystyle 4e^{2}/h} (множитель 4 появляется из-за четырёхкратного вырождения энергии), то есть

σxy=±4e2h(|n|+12){\displaystyle \sigma _{xy}=\pm {\frac {4e^{2}}{h}}\left(|n|+{\frac {1}{2}}\right)}.

Это квантование согласуется с теорией квантового эффекта Холла для дираковских безмассовых фермионов. Сравнение целочисленного квантового эффекта Холла в обычной двумерной системе и графене смотрите на рисунке 1. Здесь показаны уширенные уровни Ландау для электронов (выделение красным цветом) и для дырок (синий цвет). Если уровень Ферми находится между уровнями Ландау, то на зависимости холловской проводимости σxy{\displaystyle \sigma _{xy}} наблюдается ряд плато. Эта зависимость отличается от обычных двумерных систем (аналогом может служить двумерный электронный газ в кремнии, который является двухдолинным полупроводником в плоскостях эквивалентных {100}, то есть тоже обладает четырёхкратным вырождением уровней Ландау и холловские плато наблюдаются при ν=4|n|{\displaystyle \nu =4|n|}).

Квантовый эффект Холла (КЭХ) может использоваться как эталон сопротивления, потому что численное значение наблюдаемого в графене плато равное h2e2{\displaystyle h/2e^{2}} выполняется с хорошей точностью, хотя качество образцов уступает высокоподвижному ДЭГ в GaAs, и, соответственно, точности квантования. Преимущество КЭХ в графене в том, что он наблюдается при комнатной температуре (в магнитных полях свыше 20 Т). Основное ограничение на наблюдение КЭХ при комнатной температуре накладывает не само размытие распределения Ферми-Дирака, а рассеяние носителей на примесях, что приводит к уширению уровней Ландау.

Рис. 1. a) Квантовый эффект Холла в обычной двумерной системе. b) Квантовый эффект Холла в графене. g=gsgv=4{\displaystyle g=g_{s}g_{v}=4} — вырождение спектра

p-n переход

Из-за отсутствия запрещённой зоны в графене в структурах с верхним затвором можно сформировать непрерывный p-n переход, когда напряжение на верхнем затворе позволяет инвертировать знак носителей, задаваемый обратным затвором в графене, где концентрация носителей никогда не обращается в ноль (кроме точки электронейтральности) и нет области лишённой носителей как в обычных p-n переходах. В таких структурах тоже можно наблюдать квантовый эффект Холла, но из-за неоднородности знака носителей значения холловских плато отличаются он приведённых выше. Для структуры с одним p-n переходом значения квантования холловской проводимости описываются формулой

G=2e2h|ν′||ν||ν′|+|ν|,{\displaystyle G={\frac {2e^{2}}{h}}{\frac {|\nu ^{‘}||\nu |}{|\nu ^{‘}|+|\nu |}},}

где ν{\displaystyle \nu } и ν′{\displaystyle \nu ^{‘}} — факторы заполнения в n- и p- области соответственно (p-область находится под верхним затвором), которые могут принимать значения ±2,±6,±10{\displaystyle \pm 2,\pm 6,\pm 10} и т. д. Тогда плато в структурах с одним p-n переходом наблюдаются при значениях 1, 3/2, 3, 5/3 и т. д. Такие значения плато были наблюдены в эксперименте.

p-n-p переход

Для структуры с двумя p-n переходами соответствующие значения холловской проводимости равны

G=e2h|ν′||ν|2|ν′|+|ν|=23,65,67,…(νν′<).{\displaystyle G={\frac {e^{2}}{h}}{\frac {|\nu ^{‘}||\nu |}{2|\nu ^{‘}|+|\nu |}}={\frac {2}{3}},{\frac {6}{5}},{\frac {6}{7}},…(\nu \nu ^{‘}<0).}

Расщепление основного уровня Ландау

В работе наблюдается спиновое расщепление релятивистских уровней Ландау и снятие четырёхкратного вырождения для наинизшего уровня Ландау вблизи точки электронейтральности. Для объяснения этого эффекта предложено несколько теорий.

Термины

  • Элементарный заряд – электрический заряд на одном протоне.
  • Поперечный – создает угол между пересекающимися предметами.

Давайте кратко и понятно изучим определение эффекта Холла, раскрыв суть явления. В эффекте Холла отличие напряжений формируется в электрическом проводнике, если есть магнитное поле, перпендикулярное току. При подобной расположенности магнитной силы заряды внутри проводника испытывают силу Лоренца. Если же такое поле отсутствует, то они идут по прямому пути и иногда сталкиваются с примесями.

Перпендикулярная составляющая заставляет путь изгибаться, поэтому заряды скапливаются на одной стороне поверхности материала. На другой возникает тот же избыток, но уже с противоположным знаком. То есть, в потоке заряда создается электрический потенциал. Он вступает в противостояние с магнитной силой и ведет электроны по прямой дороге.

Сначала магнитная сила притягивает электроны и заставляет их продвигаться по изогнутому пути. В итоге, их становится слишком много на левой стороне, а на правой – не достает. Из-за этого формируется электрическое поле. Сила набирает мощность, чтобы компенсировать магнитную, поэтому будущие электроны двигаются прямолинейно

Если вы сталкиваетесь с металлом при едином типе носителя заряда, то значение эффекта рассчитывается, как

(I – коэффициент тока, B – магнитное поле, t – толщина проводящей пластины и n – плотность электронов-носителей).

Коэффициент Холла (RH) характеризует материал проводника и выясняет соотношение индуцированного электрического поля, плотности тока и магнитного поля:

В физике эффект Холла встречается часто и показывается не только в проводниках, но и среди полупроводников, ионизированных газов и квантовом вращении.

Магнит и магнитные поля
  • Электрические токи и магнитные поля
  • Постоянные магниты
  • Линии магнитного поля
  • Геомагнетизм
Магниты
Магнитная сила на движущемся электрическом заряде
  • Величина магнитной силы
  • Направление магнитной силы: Правило правой руки
Движение заряженной частицы в магнитном поле
  • Электрические и магнитные силы
  • Постоянная скорость формирует прямую линию
  • Круговое движение
  • Спиральное движение
  • Примеры и приложения
Магнитные поля, магнитные силы и проводники
  • Эффект Холла
  • Магнитная сила на токопроводящем проводнике
  • Вращательный момент на токовой петле: прямоугольный и общий
  • Закон Ампера: создание магнитного поля в длинной прямой проволоке
  • Магнитная сила между двумя параллельными проводниками
Применение магнетизма
  • Масс-спектрометр
  • Ферромагнетизм
  • Парамагнетизм и диамагнетизм
  • Соленоиды, токовые петли и электромагниты

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью.

Оцените статью:
Оставить комментарий