Как выбрать мотор-редуктор

Как определить передаточное число редуктора?

Прежде чем производить расчет редуктора, важно определиться, что включает понятие передаточное число? В качестве примера возьмем универсальный одноступенчатый редуктор Ч-100-40. Здесь передаточное число – это цифра 40

Объяснимся: при вращении входного вала выходной вал должен сделать один оборот вокруг оси за 40 оборотов входного вала. Теперь нужно обозначить различие между такими понятиями, как фактическое и номинальное передаточное число.

Номинальное передаточное число является округленным значение фактического отношения. Такая величина нужна для удобства и стандартизации обозначения. Приведем пример: универсальный редуктор Ч-100 может иметь фактическое передаточное число 7,75, тогда как номинальная величина будет равной 8 и так далее: 10=10; 12=12,5; 15,5=16; 20=20…

Далее будет рассмотрено, как выполнить расчёт передаточного числа мотор редуктора, если не читается соответствующая бирка или же отсутствует какая-либо сопроводительная документация к оборудованию.

Первый способ предполагает возможность «идентифицировать» практически любой мотор редуктор передаточное отношение определяется просто и точно. Эта методика подходит для червячного, цилиндрического, конического, планетарного и других приводных узлов.

Передаточное отношение определяется так: покрутите быстроходный вал, количество оборотов которого за один оборот тихоходного вала и будет означать передаточное число фактическое.

Что касается второго способа, то он является актуальным тогда, когда возможность прокрутить и посчитать обороты выходного вала отсутствует

В данном случае важно обратить внимание на различия между методами определения передаточного отношения «червяка» и, скажем, цилиндрического привода:

  • В качестве примера возьмем указанный выше червячный одноступенчатый редуктора 1Ч-160 универсального применения.
    В первую очередь, подсчитывается количество зубов червячного колеса. Имеем 32 зуба.

    Далее подсчитываем количество заходов витка на червячном валу. Заход – один.

    Теперь необходимо 32 разделить на 1, получаем 32 – фактическое передаточное число универсального редуктора 1Ч-160.

  • Рассмотрим способ подсчета передаточного отношения червячного редуктора типа Ч-125.
    Считаем количество зубьев на колесе «червяка». Имеем 52 зуба.

    Далее считаем количество заходов витка на червячном валу. Получилось 4.

    Теперь разделим 52 на 4 и получим 13 – фактическое передаточное число универсального редуктора Ч-125.

Свойства детали

У электродвигателя с редуктором при 220 в напряжении имеются свои особенности. Начать стоит с того, что в первую очередь волнует практически всех, — это срок эксплуатации и надежность оборудования. Эти два свойства будут напрямую зависеть от того, из каких деталей изготавливается этот элемент. Если говорить о бытовых агрегатах, то шестерни могут быть выполнены из пластмассы. Профессиональные редукторы же всегда выполняются полностью из металлических материалов.

Положительным фактором также выделяют и то, что корпус редуктора выполнен из металла, другие материалы считаются неподходящими. Преимуществом металлического корпуса именно для редуктора станет то, что в этом случае он будет гораздо легче переносить все нагрузки и возможные удары.

Еще одним важным свойством редукторного электродвигателя является то, что наличие такой детали позволяет изменять частоту вращения выходного вала ступенчатым образом.

Планетарные коллекторные мотор‑редукторы

Область применения приборных мотор-редукторов: средства автоматизации и системы управления, устройства
регулирования,
автоматические и автоматизированные системы управления, следящие мини-приводы, средства обработки и
представления
информации, специальные инструменты, медицинская техника. В ассортименте нашей компании представлен
спектр
мотор-редукторов, отвечающий широким запросам и требованиям.

Некоторые модели мотор-редукторов, по запросу, могут комплектоваться энкодерами изготовленными на основе
датчиков Холла.

Также компания «Электропривод» выпускает контроллеры, предназначенные специально для управления
коллекторными
двигателями постоянного тока – BMD‑20(40)DIN, BMSD‑20(40)Modbus и BMSD.

Назад

Модель Мощность,Вт Напряжение питания, В Макс. диаметр/Макс. длина без вала, мм Крутящий момент, кг*см Скорость, об/мин
IG‑12GM 0,6 3 12/60 0,002-2 2,8-2400
МРП‑16М 2,2 12; 24 16/55 0,1-4 7-64
IG‑16GM 0,4;1 12; 24 16/57 0,02-3 4,1-2450
МРП‑22М 3,6;2,6 12; 24 22/61 4 3,5-17,5
IG‑22CGM 1,5;1,7 12; 24 22/81 0,1-6 1,8-1580
МРП‑28 5 12; 24 28/91 0,4-10 5,7-1000
МРП‑32М 14,4; 15,6 12; 24 32/74 4,2-22,6 26-86
IG‑32GM 4,2;4 12, 24 32/78 0,3-10 8-1005
IG‑32RGM 7;8,5 12; 24 38/137 0,5-12 7,2-1170
IG‑32PGM 12,8 12; 24 38/99 1-10 7,6-970
МРП‑36М 16; 20 12; 24 39/108 3,3-200 53-276
МРК-42 25 24 42/147 2,6-150 7,6-822
МРП‑42М 42; 43 12; 24 45/143 18-200 2,5-100
IG‑42GM 48; 50 12; 24 45/126 1,7-30 1,9-1500
МРК-52 40 24 52/168 4,2-250 10-865
IG‑52GM 58;48 12; 24 52/169 1,3-100 8,3-1568
МРП‑56М 60 12; 24 58/173 21-392 7-137
МРК-62 60 24 62/190 420 10
МРК-72 120 24 72/224 125 67
IG‑71GM 70; 90 12; 24 71/224 4,2-125 3-510
МРК-82 120 24 82/233 77-139 67-122
IG‑90GM 90;105 12; 24 90/265 10-180 3,6-510
PTC7152 150 12 80/206 4,9-265,5 14-8-800,8
PT1188 600 24 152/253 273 220

Вперед

Применение механизма

Назначение редуктора неограниченное, большинство сложных машин и агрегатов имеют его в структуре механизма. В тяжелой промышленности чаще всего применяются червячные и цилиндрические механизмы, предназначенные для передачи усилия на инструмент.

Также он является основной составной частью механизма любого автомобиля, где применяются несколько подобных элементов. Он встречается в коробке передач, карданном вале, бензиновом насосе, тормозной системе и других узлах.

Некоторые автовладельцы думают, что редуктор и дифференциал имеют идентичную конструкцию и выполняют схожие функции. Но в отличие от редуктора, который изменяет крутящий момент, дифференциал распределяет крутящий момент между осями в определенной пропорции, без его повышения или понижения.

Редукторы давления можно встретить при добывании газа. Их применение позволяет контролировать давление и изменять его направление, будь то давление газа или воды. В нефтеперерабатывающей области подобный механизм используется в генераторных установка, различных мешалках, системах отопления и вентиляции. На цементных заводах применяются планетарные модели, которые являются составными частями транспортных лент, передающих огромное количество материалов. Назначение колесных редукторов состоит в работе ленточных транспортёров.

Практически на каждом производство используются устройства типа лебедок и подъемников, каждый из которых имеет в конструкции редуктор. Подобные механизмы встречаются в землеройной технике, которая применяется в строительстве и промышленных карьерах.

Встретить такие модели можно в различных бытовых приборах. Но чаще всего встречаются мотор-редукторы (в кухонных комбайнах, стиральных машинах, перфораторах и дрелях). В перфораторах применяют комбинацию планетарного и мотор-редуктора, что позволяет добиться оптимальной работы поступательно-вращающихся элементов.

Следует отметить, что практически каждый современный сложный механизм не может обойтись без использования редуктора. Данный элемент позволяет значительно повысить производительность двигателей, передачу силового усилия между конструкционными элементами и минимизировать износ механизмов. Выбор подходящей модели, своевременное обслуживание и соблюдение нормативной нагрузки, позволит полноценно использовать редуктор весь гарантийный срок, не зависимо от сферы его использования.

Цилиндрические коллекторные мотор‑редукторы

Высокий коэффициент полезного действия, устойчивость к нагреву, как следствие высокого КПД, большая
нагрузочная
способность, небольшой люфт выходного вала, уверенная работа при неравномерных нагрузках и большое
разнообразие
передаточных отношений – всё это достоинства цилиндрических редукторов. В сочетании с двигателями
постоянного тока
цилиндрические редукторы образуют изделия, используемые в приводах машин с пульсирующими нагрузками,
оборудовании для
резки металла, измельчителях, конвейерах, деревообрабатывающих станках, тестомешалках и в средствах
промышленной
автоматики. При необходимости, для управления скоростью, направлением, а также ускорением и торможением
используются
контроллеры BMD‑20DIN, BMD‑40DIN и
BMSD‑20Modbus.

Для получения бюджетного решения механического источника энергии, отлично зарекомендовали себя
мотор-редукторы
постоянного тока с цилиндрическими редукторами. В совокупности с небольшой ценой, если сравнивать,
например, с
планетарными мотор-редукторами, потребитель получает – высокий КПД, низкий нагрев, в следствии того, что
почти вся
мощность не рассеивается, а передается редуктором, высокую надежность, достаточно небольшой люфт выходного
вала,
отсутствие самоторможения, высокую нагрузочную способность и способность работы при ударных нагрузках с
частыми пусками
и остановками.

Ось выходного вала редуктора параллельна оси самого двигателя, но как правило не лежит с ней в одной
плоскости.
Благодаря большому ряду передаточных отношений, на выходе редуктора можно получить широкий спектр
скоростей и крутящих
моментов. Если для управления мотор-редукторами применять контроллеры производства компании
«Электропривод» —
BMD‑20(40)DIN, BMSD‑20(40)Modbus и BMSD,
пользователь получает
возможность управлять скоростью, плавным пуском и плавной остановкой, а также сменой направления
вращения.

Назад

Модель Мощность, Вт Напряжение питания, В Макс. диаметр/ Макс. длина без вала, мм Крутящий момент, кг*см Скорость, об/мин
RA‑12WGM 0,3; 0,5 3; 6 12/25 0,03-0,7 46-1500
RA‑20GM 1,5; 1,7 12; 24 21/58 0,16-1,8 8,6-720
RA‑27GM 0,75; 0,68 12; 24 28/50 0,2-1,2 3,6-340
RB‑35GM 11 TYPE, RB‑35GM 12 TYPE 3 12; 24 37/67 0,5-6 2-490
RB‑99WGM 12 12; 24 100/73 3-10 12-210
RB‑35GM 07 TYPE, RB‑35GM 09 TYPE 13 12; 24 37/95 1-6 2-532
SF5539 40 24 94/140 3,2-50 13-800
SF6551 70 24 108/152 4,5-80 13-800
SF7152 150 24 128/193 8,8-100 15-910
SF8156 250 24 172/219 14,9-300 10-610

Вперед

Общая информация

Из основных преимуществ электродвигателя с редуктором можно выделить несколько следующих:

  • Данный агрегат является довольно компактным, при этом выполняет огромное количество работы.
  • Малый физический вес этого устройства также увеличивают его мобильность.
  • Электродвигатель обладает довольно высоким коэффициентом полезного действия.
  • Установка и обслуживание этого электромеханического узла довольно просты.

Общий принцип работы электродвигателя мотора-редуктора заключается в том, что первая его часть превращает какую-либо энергию в механическую, а второй элемент уже предназначается для того, чтобы передать имеющуюся механическую энергию на выходной вал для изменения его частоты вращения.

Устройство и принцип работы

Конструкция мотор-редуктора представляет собой соединенные в единый блок механический редуктор и электрический двигатель. Благодаря этому, в технологической установке требуется закладывать одно место установки, вместо двух. Также не придется обеспечивать сносность валов двигателя и редуктора, подбирать и монтировать муфту, передающую вращение. Общая конструкция мотор-редуктора имеет некоторые отличия от раздельных вариантов. Корпус передачи изготавливается с необходимым запасом прочности, обеспечивающим надежное функционирование устройства с закрепленным тяжелым мотором. Для монтажа двигателя на корпусе выполняются специальные посадочные места. В конструкции ведущей шестерни редуктора предусматриваются цилиндрические отверстия, используемые для установки вала приводного мотора. На корпусе дополнительно предусматривают элементы крепления для монтажа мотор-редуктора в технологическую установку. В качестве электропривода мотор-редуктора допускается применять любые типы электродвигателей. Наиболее часто встречаются модели, использующие стандартные асинхронные электродвигатели. Для реализации моноблочного исполнения выбирают модели фланцевого типа.

Принцип действия мотор редуктора не отличается от работы классического редукторного электропривода. Момент вращения двигателя передается на ведущую шестерню, фактически установленную на валу мотора. Благодаря зубчатому зацеплению, вращающий момент преобразуется одним или несколькими ведомыми элементами, которые в свою очередь оказывают воздействие на вал технологического механизма.

Выходная скорость вращения зависит от параметров двигателя и передаточного отношения редуктора. Для получения повышенного коэффициента преобразования используются многоступенчатые модели. При необходимости коррекции скорости, мотор-редукторы легко интегрируются в системы с регулировкой оборотов посредством управляемых преобразователей.

Виды мотор-редукторов

Сегодня разработано большое число вариантов мотор-редукторов, различающихся типом двигателя, принципом построения механической части и общей геометрией. Практически все возможные комбинации присутствуют в каталогах производителей.

По виду механического зацепления подразделяют цилиндрические, конические, червячные и планетарные модели. По взаимному расположению входного и выходного валов рассматривают соосные, параллельные и угловые варианты. Исходя из передаваемых мощностей выделяют модули обычного размера и мини мотор-редукторы. По типу присоединения к процессу, встречаются варианты с одно- и двухсторонним валом, а также с полым выходным валом.

Цилиндрические мотор-редукторы

Агрегаты, использующие классические цилиндрические редукторы получили большое распространение, благодаря простоте, надежности и универсальности механической части устройства. Их использование возможно в широком спектре оборудования. В зависимости от общей конструкции, цилиндрические мотор-редукторы выполняются с соосными или параллельными валами. Количество ступеней может варьироваться от одной до шести.

По способу расположения шестерен и общей компоновке выделяют горизонтальные и вертикальные модели. Такие устройства характеризуются высоким КПД, долговечностью и относительно невысокой стоимостью.  В отличие от многих других вариантов, цилиндрические редукторы обычно не допускают произвольного расположения в пространстве, что значительно ограничивает их область применения.

Конические мотор-редукторы

Устройства, собранные на основе конических шестерен, позволяют построить угловой конический мотор-редуктор. Его главной особенностью будет перпендикулярное расположение входного и выходного валов. Это ориентирует их на использование в устройствах, требующих смены направления осей. Также конические модели выгодно устанавливать в конструкциях, предъявляющих ограничение по одному из габаритных размеров устройства. Редукторы данного типа отличаются более высокой стоимостью, в виду значительной сложности изготовления отдельных деталей. Передаточное отношение конических моделей обычно невелико. Для его повышения, коническую и цилиндрическую передачи часто комбинируют, результатом чего становится коническо-цилиндрический мотор-редуктор.

Червячные модели

Сегодня, огромную популярность приобрели червячные одноступенчатые мотор-редукторы. В качестве механической передачи в них используется червячная пара. Она обеспечивает высокое передаточное отношение при сравнительно небольших габаритах. Благодаря этому стоимость червячных моделей ниже аналогов с иной конструкцией. Среди других особенностей следует выделить перпендикулярное расположение валов и самостоятельное затормаживание механизма при отсутствии внешнего поступления энергии.

В отличие от цилиндрических и конических моделей, приложение усилия к выходному валу не приведет к проворачиванию механизма. Благодаря этому такие редукторы часто используют в ответственных решениях и подъемно-транспортных устройствах. Червячные редукторы обычно не требовательны к положению установки. Благодаря герметичному корпусу их можно располагать произвольным образом, вследствие чего эти модели активно применяются для модернизации привода станков, промышленных линий и других механизмов. Среди недостатков червячных моделей обычно выделяют небольшой КПД и повышенное тепловыделение.

Планетарные и волновые мотор-редукторы

Благодаря компактности и высоким рабочим моментам, планетарные мотор-редукторы нашли широкое использование в небольших устройствах привода. Высокое передаточное отношение и способность работать с большими нагрузками, ориентирует их на использование совместно с серводвигателями промышленных роботов  и других автоматических устройств. Встречаются планетарные модели и общепромышленного применения. Благодаря особенностям конструкции зубчатой передачи, данные модели мотор-редукторов выполняются с соосными валами. Это позволяет их использовать для привода практически любых механизмов.

Дальнейшим развитием планетарных передач стали волновые редукторы. Они обеспечивают большое передаточное отношение, плавность хода и высокую точность позиционирования выходного вала. Благодаря этому такие модели стали основой построения промышленных роботов. Наряду с высокими характеристиками, данные типы передач отличаются высокими требованиями к изготовлению, а, следовательно, и высокой стоимостью, что существенно сдерживает распространение данных моделей.

Виды редукторов

Конические редуторы передают вращающий момент при пересекающихся осях (обычно оси ведущего и ведомого колеса пересекаются под прямым углом. Конические редуторы выполняются двух типов узкого (передадочные числа от 3 до 5) и широкого (от 1 до 2,5)Прямозубые конические передачи применяются при окружных скоростях до 3 м/с, с тангенциальными зубьями — до 12 м/с, с круговыми шлифованными до 30 м/с.Данный редуктор выбирается по наибольшему крутящему моменту на тихоходном валу.Конические редуторы производятся с цельнолитыми чугунными или стальными корпусами.

Редукторы с цилиндрическими передачами могут передавать крутящие моменты в широком диапазоне, обеспечивать необходимые передаточные числа, обладают высоким КПД, простотой конструкциии, удобством монтажа, являются наиболее универсальными.

Цилиндрические передачи могут передавать крутящие моменты до 3000 кН*м, при окружных скоростях до 100м/с, они являются наиболее универсальными, подходящими под большинство задач, допускают кратковременные перегрузки, возникающие при пусках и остановках электродвигателя

По ширине зубчатых колес подразделяются на узкий и широкий тип 

Коническо — цилиндрические редукторы (быстроходная ступень выполняется конической, а последующие цилиндрическими) применяются в приводах транспортеров, питателей, конвейерных лентах, механизмах подач и т.п. так как редуктор и двигатель размещаются вдоль обслуживаемого механизма, не занимая лишней площади.крышками.

Червячные редукторы распространены в промышленности, наряду с коническими. червячные передачи преобразуют вращательное движение при скрещивающихся осях.используются в приводах, работающих в краткосрочном и среднесрочном режимах.

Достоинства — передача больших передаточных чисел в одной ступени, возможность передачи вращения от двигателя на вал под углом 90 градусов. низкий шум и вибрация, большая точность

Недостатки — потери на трение, большой нагрев.

В глобоидной (гипоидной) передаче увеличивается число одновременно работающих зубьев червяк имеет форму глобоида.Данный тип передачи похож на коническую, только оси пересекаются не под прямым углом и червяк- глобоид меньше чем коническая шестерея. ось ведущего вала не пересекается с осью ведомого вала.

Планетарные передача — сложный механизм, состоящий из зубчатых и фрикционных колес, их расположение напоминает планеты солнечной системы, откуда и название. Окружное усилие распределяется между несколькими колесами.

Составные части планетарной передачи:

Солнечная шестерня — находится в самом центре редутора,Коронная шестреня (еще называют кольцевая) — на переферической стороне, она «окружает» все шестерни и имеет зубцы с внутренней стороны.Сателлиты (еще называют планетарные) — малые шестерни между коронной и солнечной.Водило — с внешней стороны не видно, объединяет сателлиты, имеет оси для их вращения

Существует несколько разновидностей конструктивных исполнений планетарных редукторов

В зависимости от передаточного числа могут быть 1-2-3 и многоступенчатыми, планетарные передачи могут быть объединены в одном корпусе с цилиндрическими коническими или червячными.Валы редуктора могут располагать горизонтально и вертикально, на подшипниках скольжения (при высоких скоростях)или качения (при малых и средних скоростях)

В планетарных редукторах может быть большее количество передач. Окружное усилие распределяется между несколькими зубчатыми колесами.

Обеспечение максимальной точности способствует равномерному распределению нагрузки.

Моменты, передаваемые этими редукторами могут быть до 4000 кН*м

Для передачи больших мощностей используются зубчатые колеса меньшего диаметра, чем у цилиндрическими передач.

Планетарные передачи нуждаются в меньшем количестве масла для смазки, требуют высокой точности изготовления, имеют повышенный момент инерции

Если в редуторе несколько планетарных передач — это дифференциальный редуктор.

Как рассчитать редуктор на понижение оборотов

Как рассчитать передаточное отношение шестерен механической передачи.

В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев

Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев

Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.

Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.

Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.

Итак, рассмотрим пример расчета с использованием двух шестерен.

Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей. Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.

В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.

Представим, что ведущая шестерня (красная) имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.

Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.

Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.

Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.

Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.

В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.

Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

Определим теперь частоту вращения.

Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.

Будем использовать формулу: S1 × T1 = S2 × T2,

S1 – частота вращения желтой (ведущей) шестерни,

Т1 – количество зубьев желтой (ведущей) шестерни;

S2- частота вращения красной шестерни,

Т2 – количество зубьев красной шестерни.

В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.

340 rpm × 7 = S2 × 40

Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин. Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.

Оцените статью:
Оставить комментарий