Дифференциальная защита шин (дзш)

Статьи ›› Направленные защиты. Особенности применения

Области использования В автор определил свою позицию по области применения ненаправленных токовых защит от замыканий на землю: это кабельные сети со значительным числом присоединений к каждой секции, причем каждое из этих присоединений характеризуется относительно малым емкостным током. Такой случай характерен, например, для внутризаводских сетей 6–10 кВ. Использование заземляющих резисторов существенно расширяет возможности эффективного использования ненаправленных токовых защит в таких сетях даже при наличии в сети дугогасящего реактора. Сети с воздушными ЛЭП характеризуются тем, что при обрыве провода с падением его на землю однофазные замыкания (ОЗЗ) часто сопровождаются большими переходными сопротивлениями в месте повреждения . В этом случае ток замыкания определяется не только значением сопротивления заземляющего резистора, а в первую очередь значением переходного сопротивления. Ненаправленные токовые защиты становятся неэффективными – они перестают чувствовать повреждение уже при переходных сопротивлениях порядка нескольких сотен ом. Если в сети отсутствуют дугогасящие реакторы, то в рассматриваемом случае, по мнению автора, наиболее эффективны направленные защиты, реагирующие на токи и напряжения промышленной частоты. Направленные защиты могут быть полезны также при защите ответственных синхронных двигателей, генераторов и некоторых других силовых элементов . Однако при рассмотрении этого класса защит возникает существенная трудность: известно значительное количество разновидностей защит от ОЗЗ, отличающихся принципом действия и основными характеристиками, но до сих пор отсутствует (по крайней мере, в отечественной литературе) какая бы то ни было классификация разновидностей защит внутри класса «направленные защиты от ОЗЗ». Ниже под направленными защитами от ОЗЗ будем понимать такие, которые реагируют на ток, напряжение нулевой последовательности и фазовый угол между ними.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  • замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Для этих целей служат несколько видов релейных защит.

Защита по максимальному току (МТЗ)

– срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле

Рис.1

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Разновидностью МТЗ является защита по току отсечки.

При удалении трансформатора по линии от источника энергии ток короткого замыкания становится меньшим из-за потерь на сопротивление.

Вместе с тем задержка по времени для МТЗ не позволяет быстро отключить трансформатор при внутренних межфазных замыканиях, приводящих к выходу трансформатора из строя. Конструктивно защита по токовой отсечке (Рис. 2) отличается от МТЗ отсутствием реле времени. Селективность реле достигается подбором тока срабатывания реле автоматики. Данный ток должен быть равным току КЗ на защищаемом участке.

Релейная защита силовых трансформаторов

Рис. 2

Рис.3

Срабатывание МТЗ по току обладает недостаточной чувствительностью в некоторых случаях, например при защите повышающего трансформатора. В данном случае защита запускается по напряжению (Рис. 3). Трансформаторы напряжения включенные между фазовых шин управляют работой реле автоматики А и А1. Срабатывание этих реле происходит при понижении порога напряжения короткого замыкания. Алгоритм работы аналогичен МТЗ, но сторона подключения – всегда источник энергии.

Для эффективно заземленных схем(Рис. 4 слева) трансформатор тока автоматики включается непосредственно на нейтраль. Превышение тока по нулевому проводу запускает через реле автоматики А реле времени Т, которое спустя некоторое время включает промежуточное реле L и устройство отключения YAT.

Для остальных случаев защита нулевой последовательности выполняется аналогично МТЗ, только трансформаторы тока подключаются одним выводом к заземлению (Рис.4 справа).

Рис. 4

Релейная защита должна удовлетворять нескольким требованиям. КЗ на одном участке не должно приводить к отключению всей цепи электроснабжения и осуществляться с минимальным временем. Измерительные цепи должны обеспечивать надежное срабатывание при заданных значениях тока или напряжения в защищаемых линиях.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

АВ+УЗО

Традиционный способ защиты — установка автоматического выключателя и УЗО.

ВА47-29 и ВД1-63 (УЗО) IEK

ВА47-29: предельная отключающая способность — 4500 А, номинальный ток — от 0,5 до 63 А Выключатель дифференциальный: тип А или АС, номинальный ток от 16 до 63 А, номинальный отключающий дифференциальный ток — 10, 30, 100 мА.

Если мы устанавливаем эти два устройства вместе, то автоматический выключатель (АВ) отрабатывает в случае перегрузки или КЗ (тепловой и электромагнитный расцепитель), а УЗО — при возникновении утечки.

Такой вариант позволяет компоновать выключатели и УЗО под свои нужды. Например, широко используется схема, в которой одно УЗО «обслуживает» несколько линий, каждая из которых подключена через свой АВ. Это особенно актуально в бюджетных щитах.

С другой стороны, неопытный электрик может совершить ошибку, выбрав неправильный номинал или перепутав провода.

Автоматические выключатели дифференциального тока объединяют функции АВ и УЗО. В большинстве случаев достаточно выбрать нужный номинальный ток и номинальный отключающий дифференциальный ток — и защита обеспечена. У IEK есть несколько линеек АВДТ.

ПРИНЦИП ДЕЙСТВИЯ ПРОДОЛЬНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ

Для отключения КЗ в пределах всей защищаемой ЛЭП без выдержки времени служат дифференциальные РЗ, которые подразделяются на продольные и поперечные. Принцип действия продольных дифференциальных РЗ основан на сравнении значения и фазы токов в начале и конце защищаемой ЛЭП. Как видно из рис.10.1, а, при внешнем КЗ (в точке К)токи IIи IIIна концах ЛЭП АВ направлены водну сторону и равны по значению, а при КЗ на защищаемой ЛЭП (рис.10.1, б) они направлены в разные стороны и, как правило, не равны друг другу. Следовательно, сопоставляя значение и фазу токовIIи III, можно определять, где возникло КЗ – на защищаемой ЛЭП или за ее пределами. Такое сравнение токов по значению и фазе осуществляется в реагирующем органе (реле тока). Для этой цели вторичные обмотки ТТ TAIи ТАII,установленных по концам защищаемой ЛЭП и имеющих одинаковые коэффициенты трансформации, при помощи соединительного кабеля подключаются к дифференциальному реле КА (реагирующему органу) таким образом, чтобы при внешнем КЗ ток в реле был равен разности токов IIb и IIIb, а при КЗ на ЛЭП их сумме IIb + IIIb. В нашей стране применяется схема дифференциальной РЗ с циркулирующими токами, основанная на сравнении вторичных токов (рис.10.1). Реагирующий орган – токовое реле КА включается параллельно вторичным обмоткам ТТ. При таком включении в случае внешнего КЗ токи IIb и IIIb замыкаются через обмотку КА и проходят по ней в противоположном направлении (рис.10.1, а). Ток в реле равен разности токов:

Как работает дифзащита трансформатора

Дифференциальная защита работает  на сравнении величин токов в начале и в конце защищаемого участка, например и начале и конце обмоток силового трансформатора, генератора и т. п. В частности, участок между трансформаторами тока, установленными на высшей и низшей сторонах силового трансформатора, считается защищаемой зоной.

Рис 1. Дифференциальная защита трансформатора: а — токораспределение при нормальном режиме, б — то же при коротком замыкании в трансформаторе

Действия при срабатывании дифференциальной защиты трансформатора поясняется рис.1.

С обеих сторон трансформатора устанавливаются трансформаторы тока TT1 и ТТ2, вторичные обмотки которых включены последовательно. Параллельно им подключается токовое реле Т. Если характеристики трансформаторов тока будут одинаковы, то в нормальном режиме, а также при внешнем коротком замыкании токи во вторичных обмотках трансформаторов тока будут равны, разность их будет равна нулю, ток через обмотку токового реле Т протекать не будет, следовательно, защита действовать не будет.

При коротком замыкании в трансформаторе и в любой точке защищаемой зоны, например в обмотке трансформатора, по обмотке реле Т будет протекать ток, и если его величина будет равна току срабатывания реле или больше его, то реле сработает и через соответствующие вспомогательные приборы произведет двустороннее отключение поврежденного участка. Эта система будет действовать при междуфазных и межвитковых замыканиях.

Дифференциальная защита обладает высокой чувствительностью и является быстродействующей, так как для нее не требуется выдержки времени, она может выполняться с мгновенным действием, что и является ее главным положительным свойством. Однако она не обеспечивает защиты при внешних коротких замыканиях и может вызывать ложные отключения при обрыве в соединительных проводах вторичной цепи.

Рис. 2. Дифференциальная защита двух параллельно работающих трансформаторов

Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включённого на шинный мост НН.

Ввиду её сравнительной сложности, дифференциальная защита устанавливается в следующих случаях:

  • на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше;
  • на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше;
  • на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения ( kч < 2 ), а максимальная токовая защита имеет выдержку времени более 0,5 сек.

Видео: Дифференциальная защита

Общие принципы работы дифференциальной защиты. Особенности выполнения защит отдельных элементов электрической сети: кабельной линии, трансформатора, генератора, сборных шин. Защиты ЛЭП-110 кВ: направленная с вч блокировкой, диффазная.

Дифференциальная защита шин (ДЗШ)

Шины и шинные сборки являются ключевым надёжным токоведущим элементом электроустановки, соединяющим источник напряжения с распределительным устройством или же самим действующим агрегатом. Он отличается высокой нагрузочной способностью и возможностью визуального контроля за состоянием изоляторов. При этом многие знают что нужно выполнять схемы, защищающие электрооборудование, а шины при этом очень часто остаются не защищёнными.

Основные виды повреждений шин:

  1. Неправильные или ошибочные манипуляции обслуживающего персонала с переключениями шинных разъединителей;
  2. Фазное перекрытие или же короткое замыкание на землю из-за ухудшения изоляции посредством загрязнения изоляторов;
  3. Пробой при атмосферных агрессивных явлениях (гроза, молния);
  4. Неполадки изоляторов разъединителей с обеих сторон.

Для защиты шин используется в основном дифференциальная токовая защита. Принцип её действия аналогичен, и основан на сопоставлении токов в присоединениях защищаемых шин. Когда шины находятся в нормальном рабочем состоянии в катушке реле дифференциальной защиты протекает только лишь ток небаланса, который не приводит в действие подвижный механизм реле. Во время фазного замыкания о реле защиты получит ток, величина которого будет равна сумме всех токов, питающих присоединение, где произошел пробой.

Основные преимущества такой защиты это:

  1. Высокая скорость срабатывания;
  2. Отличная селективность;
  3. Сравнительно несложная реализация.

Недостаток здесь один — это ложное срабатывание, возможное чаще всего, при обрыве монтажных (соединительных) проводов, который может возникнуть вследствие различных причин как электрических, так и механических. Для того чтобы максимально уменьшить вероятность ложного срабатывания необходимо ток срабатывания ДЗШ подбирать немного больше, чем рабочий ток самого мощного присоединения.
Зона действия данной защиты ограничивается непосредственно промежутком где установлены ТТ, её срабатывание направлено на отключение от напряжения всех питающих присоединений. Для ручного контроля за током небаланса, на панели управления, устанавливается миллиамперметр и обслуживающий персонал обязан проверять его, нажав на соответствующую кнопку. Это действие персонал обязан производить один раз в смену, с записью в оперативный журнал.

Дифференциальная защита ошиновки выводится с работы в следующих случаях:

  1. Появление звукового или светового сигнала о неисправности токовых цепей или увеличение тока небаланса;
  2. Если произошло новое подключение, токовые цепи которого не присоединены к системе защиты, а также не были правильно сфазированы;
  3. При плановой проверке данной защиты.

Виды дифзащиты

Рассматриваемая здесь дифференциальная токовая защита может исполняться в двух видах: как продольно действующая, с одной стороны, и работающая по схеме «поперечного» включения, с другой. В первом случае защищаемая обмотка трехфазного трансформатора или двигателя включается в разрыв между двумя сравнивающими дифференциальными катушками устройства защиты дзт (смотрите рисунок ниже по тексту).

Схема продольной защиты

Из этого рисунка видно, что катушки трёх исполнительных реле располагаются между началом и концом обмоток каждой из фаз электропитания.

В отличие от продольной системы, поперечная защита предполагает параллельное включение тех же катушек и основана на учёте разности протекающих в них токов.

Необходимое пояснение. Этот пример подходит лишь для случая, когда рассматривается дифференциальная защита трансформатора, трехфазного двигателя или генератора.

Для всех других типов потребителей и нагрузок схема её включения будет немного отличаться от исходной.

Вторичная катушка исполнительного реле размещается в этой схеме в разрыве нейтральных проводов обмоток статора, то есть так, как это изображено на приводимом ниже рисунке.

Схема поперечной защиты

Продольная дифференциальная защита имеет следующие неоспоримые преимущества:

  • Неплохой показатель селективности;
  • Может применяться с другими видами защиты;
  • Система безотказна в работе и имеет высокое быстродействие.

К её недостаткам относится снижение эффективности действия при большой протяженности контролируемых линий.

Применение в быту

Эти виды защиты возможно применять для жилых зданий в сетях напряжением от 230 до 400 вольт, однако эти устройства называются дифаппаратами. Они бывают двух типов: дифференциальные автоматы и устройства защитного отключения. Принцип их действия основан на следствии из закона Кирхгофа (I закон), который подразумевает следующее правило: значения входящего и исходящего токов должны быть равны. Если образуется ток утечки, то величины не совпадают, и происходит отключение защищенного участка.

Основные причины возникновения тока утечки:

  1. Прикосновение к частям аппаратуры, которая находится под напряжением человека или животных.
  2. Пробои в изоляции линии проводки или аппаратуры.

В некоторых случаях автоматика (дифаппарат) срабатывает при отсутствии нагрузки (подключенных потребителей электроэнергии). Основная причина — неисправность аппарата или утечка тока в самой распределительной коробке. Однако если аппарат исправен, то в этом случае необходимо полное отключение всех автоматов после дифаппарата, и проверяются все элементы цепи на предмет пробоя на корпус. Для выбора дифзащиты необходимо учесть помещения и особенности электрических цепей, которые подлежат защите.

Дифзащита — оптимальный выбор для квартир с проводкой без заземления. Для обеспечения наибольшей эффективности необходимо ставить 3-уровневую защиту (несколько устройств на 10, 30 и100−300мА).

Для обеспечения техники безопасности ее необходимо проверять нажатием кнопки «Тест» не реже 2 раз в месяц, желательно это делать регулярно.

Дифавтоматы — более качественная защита, которая выполняет функции УЗО и выключателя. Если в жилом помещении имеется генератор, который получил широкое распространение, то для него также можно применить этот вид защиты. Схема включает в себя токовое реле, которое подключается к трансформатору тока. Реле необходимо установить на статоре между нулевыми точками, включенными звездой. При нормальной работе защита не срабатывает, но при возникновении межвиткового замыкания появляется разница магнитных потоков токового реле и защита срабатывает.

Дифзащиту можно также применять и для защиты от многофазных КЗ. Для этого необходимо приобрести специальный дифаппарат для многофазной защиты.

Продольная дифференциальная защита

Принцип действия

Дифференциальная защита силового трансформатора

Принцип действия продольной дифференциальной защиты основан на сравнении токов фаз, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока (TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле (KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.

В нормальном режиме (1) значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания (2) на защищаемом участке на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.

В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:

  • Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу ещё на стадии производства. Кроме того, при использовании дифференциальной защиты, например трансформатора, у измерительных трансформаторов тока изменяют число витков в соответствии с коэффициентом трансформации защищаемого трансформатора.
  • Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток. Для того чтобы учесть влияние намагничивающего тока, ток срабатывания реле принимают большим, чем максимальное значение намагничивающего тока.
  • Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток /) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.

Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.

Дифференциальная защита трёхфазного трансформатора, обмотки которого соединены по схеме Y/Δ)

Область применения

Дифференциальная защита устанавливается в качестве основной для защиты трансформаторов и автотрансформаторов. Одним из недостатков такой защиты является сложность её исполнения: в частности, требуется наличие надёжной, помехозащищённой линии связи между двумя участками, на которых установлены трансформаторы тока. В связи с этим дифференциальную защиту применяют для защиты одиночно работающих трансформаторов и автотрансформаторов мощностью 6300 кВА и выше, параллельно работающих трансформаторов и автотрансформаторов мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не позволяет добиться необходимой чувствительности при коротком замыкании на выводах высокого напряжения, а максимальная токовая защита имеет выдержку времени более чем 0,5 с.

Ссылки по теме

  • Беркович М.А. Молчанов В.В. Семенов В.А. Основы техники релейной защиты
    / Нормативный документ от 29 ноября 2019 г. в 11:56
  • Нагай В.И. Релейная защита ответвительных подстанций электрических сетей
    / Нормативный документ от 25 февраля 2020 г. в 14:04
  • Техническое обслуживание измерительных трансформаторов тока и напряжения. Под ред. Алексеева Б.А.
    / Нормативный документ от 30 января 2020 г. в 11:22
  • РД ЭО 1.1.2.03.0537-2006
    / Нормативный документ от 12 сентября 2011 г. в 13:04
  • Релейная защита энергетических систем.
    / Нормативный документ от 8 апреля 2008 г. в 09:53
  • Киреева Э.А. Цырук С.А. Релейная защита и автоматика электроэнергетических систем
    / Нормативный документ от 25 декабря 2019 г. в 17:17
  • Шабад М.А. Трансформаторы тока в схемах релейной защиты. Часть вторая. Расчеты для схем защиты на переменном оперативном токе
    / Нормативный документ от 14 января 2020 г. в 12:36
Оцените статью:
Оставить комментарий