Схемы включения операционных усилителей

Дифференциальный усилитель с активированным светом

Здесь схема действует как выключатель, активирующий свет, который переключает выходное реле в положение «ВКЛ» или «ВЫКЛ», когда уровень освещенности, обнаруживаемый резистором LDR, превышает или падает ниже некоторого предварительно установленного значения. Фиксированное напряжение подается на входную клемму не-инвертирующим ОУ через R1 — R2 делителя напряжения сети.

Значение напряжения на V 1 устанавливает точку срабатывания операционного усилителя с помощью потенциометра обратной связи, VR2 используется для установки гистерезиса переключения. В этом разница между уровнем освещенности для «ВКЛ» и уровнем освещенности для «ВЫКЛ».

Вторая часть дифференциального усилителя состоит из стандартного светозависимого резистора, также известного как LDR, фоторезистивный датчик, который изменяет свое значение сопротивления (отсюда и название) в зависимости от количества света на его элементе, поскольку их значение сопротивления является функцией освещения.

LDR может представлять собой любой стандартный тип фотопроводящего элемента из сульфида кадмия (CdS), такого как обычный NORP12, который имеет диапазон сопротивления от примерно 500 Ом на солнечном свете до примерно 20 кОм или более в темноте.

Фотопроводящий элемент NORP12 имеет спектральный отклик, аналогичный человеческому глазу, что делает его идеальным для использования в системах управления освещением. Сопротивление фотоэлемента пропорционально уровню света и падает с увеличением интенсивности света, поэтому уровень напряжения на V2 также будет меняться выше или ниже точки переключения, которая может определяться положением VR1 .

Затем, регулируя отключение или регулировку уровня освещенности с помощью потенциометра VR1 и гистерезис переключения с помощью потенциометра, VR2 можно сделать прецизионный светочувствительный переключатель. В зависимости от применения, выход операционного усилителя может напрямую переключать нагрузку или использовать транзисторный переключатель для управления реле или самими лампами.

Также возможно определить температуру, используя этот тип простой конфигурации схемы, заменив резистор, зависимый от света, термистором. Меняя положения VR1 и LDR , можно использовать схему для обнаружения света или темноты, а также тепла или холода с использованием термистора.

Одним из основных ограничений этого типа конструкции усилителя является то, что его входные сопротивления ниже, чем у других конфигураций операционных усилителей, например, неинвертирующего (одностороннего входа) усилителя.

Каждый источник входного напряжения должен пропустить ток через входное сопротивление, которое имеет меньшее полное сопротивление, чем сопротивление одного только входного ОУ. Это может быть хорошо для источника с низким импедансом, такого как мостовая схема выше, но не очень хорошо для источника с высоким импедансом.

Одним из способов решения этой проблемы является добавление усилителя буфера усиления Unity, такого как повторитель напряжения, который мы видели в предыдущем уроке, к каждому входному резистору. Затем это дает нам схему дифференциального усилителя с очень высоким входным сопротивлением и низким выходным сопротивлением, поскольку она состоит из двух неинвертирующих буферов и одного дифференциального усилителя. Это тогда формирует основу для большинства «инструментальных усилителей».

Электрический мост – основа дифференциального усилителя

Одним из условий развития современной промышленности производства является широкое внедрение и использования средств автоматики и контроля. Для этого разработано большое количество различных датчиков, которые позволяют контролировать большинство параметров технологических процессов и характеристик выходного продукта.

При современных требованиях к параметрам, выходной сигнала датчиков находится в пределах 0…20 мА, при этом колебания выходного сигнала соизмеримы с колебаниями источников питания устройств контроля (десятки мкА), а частота колебаний может составлять доли Герца. Поэтому применение обычных аналоговых усилителей весьма проблематично, вследствие того, что между каскадами усилителя обычно ставятся разделительные конденсаторы, не пропускающие постоянной составляющей сигнала. Кроме того конденсаторы вносят искажение в выходной сигнал.

Выходом из сложившейся ситуации является использование усилителей выполненных по так называемым балансным (балансно-разностным) схемам. Работа данных схем основана на электрическом мосту с симметричными плечами

Работа моста описывается следующим выражением

Таким образом, если выполняется данное условие, то при изменении напряжения питания ток в нагрузке остается равным нулю.

Смещение при помощи тока

В усилителях могут снижаться синфазные импульсы, если заменить резистор на источник питания. При этом текущее значение сопротивления будет возрастать, а эффект повышения сигналов существенно ослабится. Представим себе дифференциальный усилитель постоянного тока, на входе которого будут действовать синфазные импульсы. Источники энергии в эмиттерных цепях будут поддерживать напряжение, распределяя его между коллекторными цепями равномерно.

Нужно помнить о необходимости предусматривать цепи смещения постоянного тока. Если использовать конденсаторы для межкаскадной связи на входе, то должны быть активированы базовые заземленные резисторы. К таким дифференциальным усилителям относится одно предостережение. На переходе база-эмиттер не более 6 В биполярные транзисторы могут выдерживать обратное смещение. После этого может наступить пробой.

Если подается большее входное дифференциальное напряжение, то входной каскад будет разрушаться. Разрушение схемы предотвращается благодаря ограничению тока пробоя эмиттерным резистором, но качества транзисторов при этом могут понижаться. Если обратная проходимость будет возникать, снижение входного импеданса будет существенным в любом случае.

1.6 Суммирующий инвертирующий усилитель

Суммирующий усилитель
позволяет получить выходное напряжение как сумму напряжений
нескольких входных сигналов (см. рисунок 6).
Сопротивление R3выполняет роль
отрицательной обратной связи.

Рисунок
6 — Суммирующий инвертирующий усилитель

Коэффициенты
усиления суммирующего
инвертирующего усилителя, собранного на
ОУ1 (см. рисунок 6) обычно нумеруются от верхнего входа
K∑1 к нижнему на схеме входу
K∑2. Из формулы коэффициента
усиления верхнего на схеме входного сигнала

(17)

можно
определить выходное сопротивление

R3
= K∑1R1.
(18)

Из
формулы коэффициента усиления нижнего на схеме входного сигнала

(19)

можно
определить выходное сопротивление

R3
= K∑2R2.
(20)

Можно
приравнять левую и правые части уравнений

R3
= K∑1R1
= K∑2R2.
(21)

Задаваясь
R1 и R2
в соответствии с рядом номиналов резисторов, например, E24, можно
определить выходное сопротивление R3,
которое должно получиться не менее 1 кОм и соответствовать
ряду номиналов резисторов.

Суммирующий
инвертирующий усилитель
суммирует умноженные на соответствующие коэффициенты усиления входные
напряжения u11
и u12:

u21= — (K1u11+ K2u12).
(22)

Типы операционных усилителей

Все выпускаемые на сегодняшний момент операционные усилители можно условно разделить на несколько групп, которые характеризуются общей схемотехникой, динамическими и технологическими характеристиками. Необходимо отметить, что некоторые типы операционных усилителей можно отнести сразу к нескольким группам.

Типы операционных усилителей:

  • — быстродействующие широкополосные;
  • — прецизионные (высокоточные);
  • — общего применения;
  • — общего применения;
  • — многоканальные;
  • — мощные и высоковольтные;
  • — микромощные.

Быстродействующие широкополосные операционные усилители имеют высокую скорость нарастания выходного сигнала, малое время установления и высокую частоту единичного усиления. Применяются для высокочастотных сигналов.

Прецизионные (высокоточные) операционные усилители имеют небольшое значение напряжения смещения и низкий уровень шумов, а также большим коэффициентом усиления и подавления синфазного сигнала, большим входным сопротивлением. Применяются для усиления малых электрических сигналов.

Операционные усилители общего применения применяются в схемах, которые допускают погрешность на уровне 1%. Имеют средний уровень параметров и наибольшее распространение.

Операционные усилители с малым входным током имеют уровень входного тока прядка десятков пикоампер (IВХ ≤ 100 пА). Входные каскады данных усилителей построены на основе полевых транзисторов.

Многоканальные операционные усилители служат для улучшения массогабаритных показателей и имеют параметры аналогичные ОУ общего применения или микромощным усилителям.

Мощные и высоковольтные операционные усилители содержат выходные каскады построенные на мощных высоковольтных элементах и имеют выходной ток IВХ ≥ 100 мА и выходное напряжение UBЫX ≥ 15 В.

Микромощные операционные усилители применяются там, где необходимо ограничить потребляемый ток, например приборы с автономным питанием, работающие в ждущем режиме. Потребляемый ток составляет IПОТ.МАКС ≤ 1 мА.

Многие могут задаться вполне логичным вопросом, почему операционным усилителям отводится существенное место в современной радиоэлектронике. Ответ довольно прост, ОУ имеет очень большой коэффициент усиления напряжения и тока, что позволяет при использовании обратной связи практически не учитывать усиление ОУ, а расчёт коэффициента усиления схемы регулировать только параметрами цепи обратной связи.

Такая цепь обратной связи, называется отрицательная обратная связь и она является основой работы всех операционных усилителей. О принципах работы операционных усилителей с отрицательной обратной связью я расскажу в своих следующих статьях.

Использование в усилителях дифференциальных схем

Работа дифференциального усилителя может быть адаптирована под несимметричные входные сигналы. Для этого необходимо подать сигнал на один из его входов, а второй просто заземлить. Неиспользуемые транзисторы из устройства исключить не получится. Дифференциальная схема дает возможность компенсировать температурные изменения. Даже если будет заземлен один из входов, термостатор может функционировать. Они могут изменяться соответственно колебаниям температуры напряжения. При этом балансировка схемы нарушаться не будет.

Кроме того, исчезает необходимость учета падения подаваемого тока. Качество работы таких устройств может быть понижено только из-за несогласованности напряжений или их температурных характеристик. Производители поставляют на рынок транзисторные пары, а также интегральные дифференциальные усилители с достаточно высоким согласованием.

Оцените статью:
Оставить комментарий