Электрический ток

Что такое ток, напряжение и сопротивление

Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.

Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.

Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:

  • E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 – разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Электролиз в домашних условиях

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U )

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.

Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.

Источники электрической энергии

Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

  • Ток – Ампер (А)
  • Напряжение – Вольт (В)
  • Сопротивление – Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

Причины появления

Заряженные частицы начинают перемещаться благодаря действию различных источников питания. К их числу принадлежат батареи, аккумуляторы, генераторы и другие устройства, способные превращать всевозможные виды энергии в электрическую. Во время этих преобразований наглядно проявляется закон сохранения энергии. Частицы начинают движение в тот момент, когда электрическая цепь замыкается, что приводит к появлению в проводнике электрополя.

Именно оно и оказывает определенное воздействие на свободные частицы. Во время исследований ученые установили, что каждый источник электротока обладает электродвижущей силой (ЭДС). Следует помнить, что электроны не появляются благодаря источнику питания, а присутствуют в материале проводника. Они начинают двигаться под прямым воздействием электрополя, так как не связаны атомными связями и являются свободными.

В качестве примера можно привести замкнутую систему труб, воду в которых перекачивает насос. В зависимости от размеров труб и числа ответвлений, жидкость будет перемещаться в них с разной скоростью.

Электрический ток в веществах

Направленное движение частиц может возникнуть в разных физических телах вне зависимости от их агрегатного состояния. Способность вещества пропускать через себя ток определяется проводимостью. Это параметр характеризуется числом свободных носителей, которые участвуют в переносе заряда.

В зависимости от своих физических свойств, все существующие тела можно разделить на следующие виды:

  1. Проводники — твёрдые вещества, имеющие достаточное количество свободных электронов, которые и являются источником тока. Основными носителями в них являются электроны. К ним относятся все металлы.
  2. Диэлектрики — материалы с большой величиной удельного сопротивления, в них практически невозможно создать ток.
  3. Полупроводники — по проводимости занимают промежуточное место между проводниками и диэлектриками. Их характеристики сильно зависят от температуры и степени примесей в кристаллической решётке.
  4. Электролиты — жидкости, способные пропускать электрический ток. Как пример, можно привести водные растворы кислот, щелочей, солей. При взаимодействии с водой молекулы веществ распадаются на ионы. Они, в свою очередь, образуют отдельные атомы или группы. Эти образования обладают положительным зарядом (катионы) или отрицательным (анионы).
  5. Газы и плазма — ток в них создаётся за счёт перемещения электронов и положительных ионов.
  6. Вакуум — основные носители электроны. Чтобы они появились, в среду вводят металлические электроды.

Таким образом, в веществах токи возникают в результате упорядоченного изменения положения заряженных частиц относительно той или иной среды. Этот процесс называют возникновением тока проводимости. Но вместе с этим существует и движение макроскопических заряженных тел — конвекционное. Примером такого вида тока могут служить капли дождя во время грома.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Электрический ток и поток электронов

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов. Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель

Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет

Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель. Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет.

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Что мы узнали?

Итак, мы узнали, что направление тока в электрической цепи соответствует направлению движения положительных зарядов, то есть от плюсового потенциала (плюса) к минусовому потенциалу (минусу). Несмотря на то, что чаще всего электрический ток создается отрицательно заряженными электронами, выбор направления тока было решено оставить именно таким. Так сложилось исторически.

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема

Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Электрический ток в разных веществах

Электрический ток возникает в самых разных веществах, которые могут находиться в различных агрегатных состояниях. Рассмотрим некоторые примеры, демонстрирующие возникновение направленного потока заряженных частиц в твердых, жидких и газообразных средах:

  • В металлах имеется много свободных электронов, которые являются главным источником тока;
  • Электролиты — это жидкости, проводящие электрический ток. Водные растворы кислот, щелочей, солей — все это примеры электролитов. Попадая в воду молекулы этих веществ распадаются на ионы, представляющие собой заряженные атомы или группы атомов, имеющие положительный (катионы) или отрицательный (анионы) электрические заряды. Катионы и анионы образуют электрический ток в электролитах;
  • В газах и плазме ток создается за счет движения электронов и положительно заряженных ионов;
  • В вакууме — за счет электронов, вылетающих с поверхности металлических электродов.

Рис. 1. Примеры электрического тока в разных веществах (металлах, электролитах, газах, плазме, вакууме).

В приведенных примерах токи возникают в результате движения заряженных частиц относительно той или иной среды (внутри тел). Такой ток называется током проводимости. Движение макроскопических заряженных тел называется конвекционным током. Примером конвекционного тока могут служить капли дождя во время разряда молнии.

Оцените статью:
Оставить комментарий
Adblock
detector