Плата arduino uno r3: схема, описание, подключение устройств
Содержание
Загрузка библиотек и запуск SD card на Arduino
Чтобы подсоединиться к SD карте и свободно передавать на неё данные, потребуется написать немало кода, однако здесь нам поможет встроенная библиотека SD.
Библиотеку по работе с картами памяти можно найти на официальном сайте производителя микроконтроллера: https://www.arduino.cc/en/Reference/SD
Открыв подменю «образцов», найдите заготовку «cardinfo», именно её мы не будем использовать в качестве прописной функции при загрузке информации. Скетч пригодится лишь для проверки, опознаётся ли дополнительная память на устройстве. Проверяйте chipSelect, учитывая, что подключение идёт через 10 пин.
#include <SD.h> const int chipSelect = 4; void setup() { Serial.begin(9600); while (!Serial) { ; // wait for serial port to connect. } Serial.print(“Initializing SD card…”); pinMode(10, OUTPUT); //iniot SD card if (!SD.begin(chipSelect)) { Serial.println(“Card failed, or not present”); return; } Serial.println(“card initialized.”); } void loop() { String dataString = “”; // read three sensors and append to the string for (int analogPin = 0; analogPin < 3; analogPin++) { int sensor = analogRead(analogPin); dataString += String(sensor); if (analogPin < 2) { dataString += “,”; } } // open the file. File dataFile = SD.open(“data.txt”, FILE_WRITE); // if the file is available, write to it: if (dataFile) { dataFile.println(dataString); dataFile.close(); } // if the file isn’t open else { Serial.println(“error opening data.txt”); } }
Если всё прошло удачно, то на экран выведется информация о типе файловой системы и объёме вашей SD-карты. Если же производитель подсунул вам не лучший продукт, могут возникнуть ошибки. Здесь проще купить новую флешку, чем бороться с ошибками файловой системы, изначально заложенными в девайс.
Когда вы получите отклик от системы, можете начинать подгружать библиотеки и нужные вам файлы. SD-карта полностью работает и подключена, однако не забудьте протестировать несколько типов файловых систем, дабы подобрать оптимальный вариант по скорости и потреблению ресурсов. В каждом конкретном случае эти параметры будут разными, поэтому не бойтесь экспериментировать.
Распиновка Arduino NANO v3
Главное отличие этой миниатюрной платы, заключается в отсутствии гнезда для внешнего источника питания, вместо этого используются VIN. Когда речь идет о создании миниатюрного устройства, то размер Arduino Nano v3 ATmega328 / ATmega168 играет решающую роль при выборе платформы. При этом, Ардуино УНО — это более удобная платформа для старта и начала изучения микроконтроллеров.
Arduino Nano распиновка платы на русском, ICSP
Платы могут выпускаться в двух вариантах — с припаянными ножками и без (ножки обычно идут в комплекте). Платы без ножек будет намного удобнее использовать в проектах на Ардуино, припаивая к портам платы провода напрямую. Платы с ножками можно устанавливать на макетных платах, используя для соединения с датчиками и модулями коннекторы (провода «папа-папа» и «папа-мама»).
Arduino UNO: распиновка платы
Что такое Arduino UNO CH340 мы уже рассказывали, поэтому перейдем сразу к характеристикам и описанию платы Ардуино УНО. Распиновка и принципиальная схема платформы представлена на фото далее. Как мы уже говорили, вся линейка плат имеет полностью открытую архитектуру системы, что позволяет любому стороннему производителю копировать и модернизировать платы Arduino Genuino UNO.
Arduino UNO распиновка платы на русском, ICSP
UNO является лучшим вариантом для знакомства с микроконтроллерами. Плата имеет удобный размер и все необходимое для начала работы: 14 цифровых входов/выходов (6 портов могут работать в режиме ШИМ), 6 аналоговых входов для датчиков, разъем USB для программирования и разъем питания Arduino UNO от блока питания или кроны. Но главное — это огромное множество уроков и инструкций в Интернете.
Описание элементов платы Arduino Nano V3
- USB Jack – разъем USB Mini-B для подключения устройств USB;
- Analog Reference Pin – для определения опорного напряжения АЦП;
- Ground – земля;
- Digital Pins (2-13) – цифровые выводы;
- TXD – пин передачи данных по UART;
- RXD – пин приема данных по UART;
- Reset Button – кнопка перезагрузки микроконтроллера;
- ISCP (In-Circuit Serial Programmer) – контакты для перепрограммирования платы;
- Microcontroller ATmega328P – микроконтроллер — главный элемент на плате;
- Analog Input Pins (A0-A7) – аналоговые входы;
- Vin – вход используется для подачи питания от внешнего источника;
- Ground Pins – земля;
- 5 Volt Power Pin – питание 5 В;
- 3 Volt Power Pin – питание 3.3 В;
- RST – вход для перезагрузки;
- SMD Crystal – кварцевый резонатор (жарг. «кварц») — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы;
- TX LED (White) – светодиод — индикатор отправления данных по UART;
- RX LED (Red) – светодиод — индикатор приёма данных по UART;
- Power LED (Blue) – светодиод — индикатор питания;
- Pin 13 LED (Wellow) – подключенный светодиод к 13-му пину.
Прошивка и память Arduino v3 0 CH340G
Стандартный вариант платы Arduino Nano, работающий на микросхеме ATmega328P, можно прошить исключительно через программатор с SPI-интерфейсом.
При необходимости такую Nano-модель можно прошить и через SPI-интерфейс.
Чтобы загружать прошивки через mini-USB, потребуется:
- Подсоединить плату к ПК через USB. Система определит устройство как USB 2.0 SERIAL.
- Скачать и установить драйвер CH340G.
Как только драйвер будет установлен, система определит плату корректно и ее можно будет прошить через программатор. На плате загорится светодиод ON, а светодиод LED будет мигать.
Виды памяти
ATmega328P поддерживает 3 вида памяти:
- Flash. Она выступает в качестве постоянного запоминающего устройства.
- ОЗУ.
- EEPROM. Эта память также является постоянным запоминающим устройством, но ее можно перепрограммировать.
В микроконтроллере от Atmel 32 Кб Flash-памяти (свободно 30 Кб, т. к. 2 Кб занято загрузчиком), 2 Кб ОЗУ и 1 Кб EEPROM.
Распиновка Arduino Nano
У Arduino Nano распиновка выполнена так, как показано на картинке ниже:
1 – TX (передача UART) или порт D0;
2 – RX (прием UART) или порт D1;
3,28 – сброс (RESET);
4,29 – земля;
5…16 – порты D3…D13;
17 – напряжение 3,3 В;
18 – опорное напряжение АЦП;
19…26 – 8 каналов АЦП A0…A7;
27 – напряжение 5,0 В;
30 – плюс питания модуля 2-20 В
Первые два вывода используются либо для связи по классическому последовательному интерфейсу с другим устройством, либо как порты для двоичных данных. В arduino nano распиновка 5…16 выводов, кроме указанных, имеет дополнительные функции:
5 – прерывание INT0;
6 – прерывание INT1 / ШИМ / AIN0;
7 – таймер-счетчик T0 / шина I2C SDA / AIN1;
8 – таймер-счетчик T1 / шина I2C SCL / ШИМ;
9,12,13,14 – ШИМ;
16 – светодиод.
Более подробная схема вводов-выводов на рисунке ниже (нажмите для увеличения):
Распиновка Arduino Nano
AIN0 и AIN1 – это входы быстродействующего аналогового компаратора. Кроме того, имеется 6 каналов с выходом широтно-импульсного модулятора (ШИМ). К тому же имеется большее число пинов, на которые могут быть переведены запросы прерываний.
Проблема с микроконтроллерами заключается в том, что при больших функциональных возможностях (ведь в них кроме процессора есть еще довольно богатый набор периферийных устройств) они имеют ограниченное число выводов. Разработчику тут есть над чем подумать уже на этапе составления принципиальной схемы, ведь его цель – максимально использовать устройство, в то же время не допуская конфликтов между функциями выводов.
Распиновка Arduino Nano 3.0
У Arduino Nano 3.0 распиновка не отличается от той схемы, что приведена выше, несмотря на другой контроллер. ATmega328 отличается от ATmega168 вдвое большим объемами памяти всех видов:
- flash,
- оперативной,
- EEPROM.
Это позволяет улучшить ПО прошивки и загручика, а также дать пользователю больше возможностей для его прикладной задачи. Arduino nano v 3.0 распиновка может быть использована для программирования, но для этих целей используется отдельный разъем. Об этом ниже.
Описание пинов/Распиновка Arduino Nano
Каждый из 14 цифровых выводов Nano, используя функции , , и , может настраиваться как вход или выход. Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:
- Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины FTDI USB-to-TTL.
- Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции .
- ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции .
- SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
- LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.
На платформе Nano установлены 8 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством функции . Некоторые выводы имеют дополнительные функции:
I2C: A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI). Для создания используется библиотека Wire.
Дополнительная пара выводов платформы:
- AREF. Опорное напряжение для аналоговых входов. Используется с функцией .
- Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.
Аналоговые, цифровые и шим пины Ардуино
Все пины можно разделить на несколько видов, различие будет только в количестве данных выводов на различных платах. Например, на Arduino Mega 2560 цифровых и аналоговых портов, значительно больше, чем на Uno или Nano из-за большего размера платы и производительности микроконтроллера. В остальном характеристики и способы программирования пинов не отличаются друг от друга.
- Power Pins — порты питания, режим их работы нельзя запрограммировать или изменить. Они выдают стабилизированное напряжение 5V или 3,3V, Vin выдает напряжение от источника питания, а GND — это заземление (общий минус);
- PWM Pins — порты с ШИМ модуляцией, которые можно запрограммировать, как цифровой выход/вход. Данные порты обозначены на плате знаком тильда (˜);
- Analog In — порты, принимающие аналоговый сигнал от датчиков, работают на вход. Данные порты тоже можно запрограммировать, как цифровой вход/выход. Данные пины не поддерживают ШИМ модуляцию.
Режим пинов назначается в процедуре void setup с помощью pinMode(), например:
void setup() { pinMode(10, OUTPUT); // объявляем пин 10 как выход pinMode(A2, OUTPUT); // объявляем пин A2 как выход pinMode(12, INPUT); // объявляем пин 12 как вход pinMode(A1, INPUT); // объявляем пин A1 как вход }
Пояснения к коду:
- к выходу 10 и A2 можно подключить светодиод, который будет включаться и выключаться при вызове команды в программе;
- пин 10 может использоваться для ШИМ сигнала, например, чтобы плавно включить светодиод, а пин A2 может выдавать только цифровой сигнал (0 или 1);
- к входу 12 и A1 можно подключить цифровой датчик и микроконтроллер будет проверять наличие сигнала на этих пинах (логический нуль или единицу);
- к входу A1 можно подключить аналоговый датчик тогда микроконтроллер будет получать не только сигнал но и узнавать характеристику сигнала.
Мы не случайно разделили пины с ШИМ модуляцией (PWM Pins) и аналоговые. PWM пины создают аналоговый сигнал, к ним подключают сервопривод, шаговый двигатель и другие устройства, где требуется подавать сигнал с разными характеристиками. Аналоговые пины (Analog In) используются для подключения аналоговых датчиков, с них входящий сигнал преобразуется в цифровой с помощью встроенного АЦП.
Ардуино Uno пины: шим, аналоговые, цифровые
Arduino UNO распиновка платы на русском
ШИМ (PWM) порты (Analog Out) |
3, 5, 6, 9, 10, 11 |
Аналоговые порты (Analog In) |
A0, A1, A2, A3, A4, A5 на некоторых платах: A6, A7 |
Цифровые порты (Digital In/Out) |
все порты со 2 по 13 пин можно использовать: A0 — A7 |
Из таблицы видно, какие пины на Arduino UNO поддерживают шим. Аналоговые пины (Analog In) используют, как цифровые если недостаточно портов общего назначения, например, вы хотите подключить к плате 15 светодиодов. Кроме того, на плате Arduino Uno и Nano порты A4 и A5 используются для I2C протокола (SDA и SCL пины) — они работают параллельно с пинами A4 и A5. Об этом мы расскажем чуть позже.
Ардуино Nano пины: шим, аналоговые, цифровые
Arduino Nano распиновка платы на русском
ШИМ (PWM) порты (Analog Out) |
3, 5, 6, 9, 10, 11 |
Аналоговые порты (Analog In) |
A0, A1, A2, A3, A4, A5 на некоторых платах: A6, A7 |
Цифровые порты (Digital In/Out) |
все порты со 2 по 13 пин можно использовать: A0 — A7 |
Если вы заметили, то пины на Arduino Nano и Uno имеют одинаковое количество и назначение. Платы отличаются лишь своими габаритами. Nano — более компактная и удобная плата, для экономии места на нее не ставят разъем питания, для этого используются пины Vin и GND на которое подается питание от источника.
Ардуино Mega пины: шим, аналоговые, цифровые
Схема распиновки платы Arduino Mega 2560 r3
ШИМ (PWM) порты (Analog Out) |
все порты со 2 по 13 пин дополнительно: 44, 45, 46 пин |
Аналоговые порты (Analog In) |
с A0 до A15 |
Цифровые порты (Digital In/Out) |
все порты со 2 по 13, со 22 по 52 пин можно использовать: A0 — A15 |
Пины коммуникации нежелательно использовать, как обычные цифровые порты. Особенно при таком количестве портов общего назначения, как на Mega 2560. Более подробную информацию о рассмотренных платах, а также о других микроконтроллерах семейства Arduino (Pro Mini, Leonardo, Due и пр.): характеристики, описание пинов, габариты и т.д. можно узнать в разделе Микроконтроллеры на нашем сайте.