Генератор постоянного тока
Содержание
Такая машина предназначена для генерации постоянного тока с применением перемещения проводника в магнитном поле. В данной статье рассмотрены физические принципы работы, конструкторские схемы, расчёт и сфера применения этого устройства.
Генерация электроэнергии
На рисунке ниже изображён простейший опыт, который помогает понять принцип действия генератора.
Если переместить проводник в пространстве так, чтобы он пересекал линии магнитного поля, то в нём образуется электродвижущая сила (ЭДС). Это явление называют индукцией. При замыкании свободных концов в цепи будет течь ток, который можно использовать для питания лампы накаливания, или другой полезной нагрузки.
На рисунке изображена правая рука с отогнутым в сторону перемещения проводника большим пальцем. Этот простой способ используют для наглядного определения направления тока в цепи.
По указанной выше схеме действующую машину создать не получится. Но следующий вариант вполне применим на практике.
На рисунке изображена рамка, вращающаяся в магнитном поле (направление силовых линии обозначены стрелкой «В»). Съёмники энергии – это специальные щётки. Рамка присоединена к половинам колец (коллекторам), разъединённым электрически с помощью особых изолирующих вставок. На выходе этого устройства электродинамическая сила будет изменяться в соответствии с приведённым графиком. Её величину определяет расчёт на основе следующей формулы:
е=2В*n, где
В – это поток созданного магнитного поля в Вб;
n – количество полных оборотов рамки за одну секунду.
Уменьшение пульсации
На графике, который изображён выше, указан уровень еср. Если бы удалось стабилизировать ЭДС генератора на соответствующем значении, был бы получен нужный результат. Как такая задача решается на практике, видно из следующего рисунка.
Выходные электрические параметры этой машины далеки от идеала. Но ясно, что последовательное увеличение количества рамок позволит получить достаточно равномерный верхний уровень. Позитивное влияние в этом случае будут оказывать переходные процессы и взаимодействие электромагнитных полей, ведь приведённые графики иллюстрируют только примерные данные. Но даже в таком варианте ЭДС генератора на выходе будет изменяться не на всю амплитуду, а лишь на величину от Еmin до Еmax.
Опытным путём можно подтвердить, что применение 20-22-х коллекторные конструкции позволят снизить пульсации ЭДС до 1-0,9%. Такие изменения на выходе генератора вполне приемлемы для решения многих практических задач.
Особенности работы генератора
Выше было отмечено улучшение качества электрических параметров при увеличении числа витков в обмотках. Но такое решение позволит получить ещё один положительный эффект. С его помощью увеличивают индуцируемую ЭДС на выходе в расчёте на один оборот ротора. Такой приём используют для того, чтобы генератор постоянного тока выполнял свои функции с высоким коэффициентом полезного действия.
С целью дальнейшего улучшения работы машины, конструкторы изучили возможности постоянных магнитов. Они способны выполнять свои полезные функции в автономном режиме без подключения к внешнему источнику энергии. Однако более сильное поле с помощью таких решений создать невозможно. Необходимый результат могут обеспечить только электромагниты.
Выше были рассмотрены «идеальные» ситуации. Но при реализации конкретных проектов возникали разные затруднения. Например, необходимо было найти материал, который обеспечит хорошую электрическую проводимость, но одновременно не будет провоцировать ускоренный износ поверхности коллектора. Решение известно – это графитовые стержни, которые прижимаются с помощью пружин. Такие изделия сами постепенно истираются. Поэтому необходим определённый запас щёток для своевременной замены.
Для описания другой проблемы нужно пояснить некоторые процессы при вращении ротора в магнитном поле. Необходимо привести определения следующих базовых понятий:
- геометрической нейтралью называют линию, которая проведена на равном расстоянии от северного и южного полюса;
- физической называют такую линию, которая условно разделяет области воздействия полей, создаваемые электрической машиной.
В статическом положении эти линии совпадают. Но при начале вращения геометрическая – остаётся на своём месте, а физическая – отклоняется на определённый угол. Определённое влияние на этот процесс оказывает индуцированный ток, который индуцирует якорь. Суммарное воздействие всех полей ещё больше увеличивает угол смещения нейтрали (в сторону вращения ротора).
Для этого точку прижима щёток смещают относительно геометрической центральной оси. При отклонении возникают электрические потери, образуются искры, которые попадают на коллекторные пластины. В такой ситуации появляющаяся окалина ухудшает проводимость, что ещё более снижает КПД установки.
Понятно, что в реальных условиях, когда нагрузка на выходе генератора изменяется, пришлось бы постоянно выполнять коррекцию положения щёток. Никакой расчёт в этом случае не поможет, ведь механическое перемещение щёток было бы слишком сложным. Чтобы исключить подобные вредные влияния устанавливают дополнительные полюсы. С их помощью создают магнитное поле. Оно компенсирует искажения, которые вносит якорь. Эти же части конструкции выполняют ещё одну важную функцию. При правильной настройке они нейтрализуют броски, при изменении направления тока в каждый момент, когда якорь переходит через нейтраль.
Схемы электрических машин
Генераторы постоянного тока создают, со следующими схемами, обмоток возбуждения:
- независимой;
- последовательной;
- параллельной;
- смешанной.
Каждый из способов работы генератора имеет свои преимущества, особенности и недостатки. Принцип независимого возбуждения понятен из названия. В этом случае напряжение питания подаётся от внешнего источника. Это может быть аккумуляторная батарея либо отдельный генератор, выполняющий вспомогательные функции.
Ток в такой обмотке достигает сравнительно небольших величин. Как правило, он не превышает 5-6% от генерируемого тока.
В некоторых типовых схемах используют изменение напряжения Uв.
Чтобы понять, как работает машина, и определить оптимальный алгоритм настройки, надо измерить электрические параметры в режиме холостого хода. Он отличается отсутствием нагрузки в выходной цепи. Поэтому соответствующие влияния можно не принимать в расчёт. В таком состоянии напряжение, создаваемое генератором, будет равно ЭДС. На следующем рисунке в части а) приведён примерный график.
В этом эксперименте якорь вращается с неизменной скоростью (n1), поэтому только ток в обмотке возбуждения определял величину магнитного поля и, соответственно, ЭДС на выходе. Восходящий участок графика (1) показывает изменение напряжения на выходе при увеличении тока в обмотке. Нисходящий (2) – обратное действие при уменьшении тока. На нижнем графике приведены значения, которые были получены при снижении скорости вращения.
В части б) размещён график, иллюстрирующий изменение напряжения при разных нагрузках. Здесь постоянными были скорость вращения ротора и ток в обмотке возбуждения. Падение U0 объясняется снижением ЭДС, которое происходит из-за паразитного действия магнитного потока, создаваемый якорем, а также падением напряжения в его цепи.
Третий график (в) поясняет принципы регулировки генератора. Видно, что коррекции тока в обмотке возбуждения позволяют поддерживать напряжение на одном уровне при изменениях в цепи нагрузки.
На основании полученных результатов измерений и общего анализа можно сделать следующие выводы:
- Внешнее возбуждение пригодно для регулировок напряжения генератора в широком диапазоне простыми методами. Для изменения напряжения в обмотке подойдёт элементарный расчёт.
- Такая конструкция характеризуется относительно небольшим трансформированием производительности при изменении параметров нагрузки.
- Необходим внешний источник питания. Это усложняет устройство и несколько снижает общую надёжность.
На следующих рисунках приведены принципиальные схемы генераторов с последовательной, параллельной и смешанной схемой обмотки возбуждения.
Особенности схем
Вид схемы | Особенности | Применение |
---|---|---|
Последовательная | Очень малое напряжение в режиме холостого хода, сильная зависимость от параметров нагрузки. | Для генерации энергии такая схема не подходит. Её используют для создания машин, в которых торможение выполняется с применением реостатных методик. |
Параллельная | Подключение нагрузки осуществляется только после достижения номинального значения выходного напряжения. | Эта схема подходит для создания генераторов, которые вырабатывают электроэнергию для заряда аккумуляторных батарей. |
Смешанная | Низкое влияние изменения параметров нагрузки на выходное напряжение. Требуется точный расчёт компонентов схемы, чтобы получить хороший результат. | Такие решения применяют в сварочных аппаратах, где для работы устройство использует режим короткого замыкания. |
Устройство генератора и расчёт
Устройства этого типа вытесняются аналогичными установками переменного тока, которые менее критичны к нагрузкам, обладают хорошими эксплуатационными характеристиками. Расчёт промышленного генератора выполняется специализированным конструкторским бюро.
На следующем рисунке приведена конструкция типичного генератора.
Использованы следующие обозначения:
- 1, 2 – сердечник и катушка основного полюса;
- 3 – наконечник;
- 4, 5 – сердечник и катушка добавочного полюса;
- 6 – станина;
- 7 – ярмо;
- 8 – подшипник;
- 9, 11 – сердечник и обмотка якоря;
- 10 – вентилятор;
- 12 – коллектор;
- 13 – щёточный палец.
Видео. Модель генератора постоянного тока
Самостоятельный расчёт и создание генератора постоянного тока своими руками вряд ли целесообразны. При необходимости не будет трудно найти и приобрести устройство с нужными параметрами. Конструкция его слишком сложна для качественного воспроизведения в домашних условиях.