Особенности термоэлектрических генераторов

Устройство термоэлектрогенератора своими руками

Столь сложные процессы, которые протекают в ТЭГ, никак не останавливают местных «кулибиных» в стремлении присоединится к мировому научно-техническому процессу по созданию ТЭГ. Использование самодельных ТЭГ применяется уже давно. Во время Великой Отечественной войны партизаны делали универсальный термоэлектрогенератор. Он вырабатывал электрический ток для зарядки рации.

С появлением на рынке элементов Пельтье по доступными для бытового потребителя ценам возможно сделать ТЭГ самому, выполнив следующие шаги.

  1. Приобрести два радиатора в магазине IT и применить термопасту. Последняя облегчит соединение элемента Пельтье.
  2. Разделить радиаторы любым теплоизолятором.
  3. Сделать отверстие в изоляторе для размещения элемента Пельтье и проводов.
  4. Собрать конструкцию, и поднести источник тепла (свеча) к одному из радиаторов. Чем дольше нагрев, тем больше тока будет вырабатываться из домашнего термоэлектрического генератора.

Работает такой прибор бесшумно, и имеет небольшой вес. Термоэлектрический генератор ic2 в зависимости от размера, может подключить зарядку мобильного телефона, включить небольшой радиоприемник и светодиодное освещение.

В настоящее время многие известные мировые производители начали выпуск различных доступных гаджетов с применением ТЭГ для автолюбителей и путешественников.

Примечания

  1. Тимошенко, Алексей . gzt.ru (16 сентября 2010). Дата обращения 22 октября 2010.
  2. . Lenta.ru (26 июля 2010). Дата обращения 8 ноября 2010.
  3.  (англ.). Oak Ridge Associated Universities (23 марта 2009). Дата обращения 15 января 2011.
  4. Bayles, John J.; Taylor, Douglas.  (англ.). Department of Defense (1970). Дата обращения 15 января 2011.
  5.  (недоступная ссылка). Дата обращения 7 декабря 2014.
  6. А. Криворучек. . Известия (23 августа 2013). Дата обращения 15 сентября 2013.
  7. Р. Алимов. . НКО «Беллона» (2 апреля 2005). Дата обращения 5 июля 2013.
  8. . Regnum (13 сентября 2007). Дата обращения 25 мая 2013.
  9. IAEA.  (неопр.). IAEA.org.
  10.  (недоступная ссылка). Администрация Чаунского муниципального района (28 мая 2012). Дата обращения 8 июля 2013.
  11. В. Литовка.  (недоступная ссылка). информационный бюллетень «Кайра-вестник» (№4, сентябрь 2002). Дата обращения 15 сентября 2013.
  12. Алексей Рамм, Роман Крецул, Алексей Козаченко. . Известия (15 августа 2019). Дата обращения 17 августа 2019.

Применение

РИТЭГ космического аппарата «New Horizons»

Схема РИТЭГа, используемого на космическом аппарате «Кассини-Гюйгенс»

РИТЭГи применимы как источники энергии для автономных систем, удалённых от традиционных источников электроснабжения и нуждающихся в нескольких десятках-сотнях ватт при очень длительном времени работы, слишком долгом для топливных элементов или аккумуляторов.

В космосе

РИТЭГи являются основным источником электропитания на космических аппаратах, выполняющих продолжительное задание и сильно удаляющихся от Солнца (например «Вояджер-2» или «Кассини-Гюйгенс»), где использование солнечных батарей неэффективно или невозможно.

Плутоний-238 в 2006 г. при запуске зонда «Новые горизонты» к Плутону нашёл своё применение в качестве источника питания для аппаратуры космического аппарата. Радиоизотопный генератор содержал 11 кг высокочистого диоксида 238Pu, производящего в среднем 220 Вт электроэнергии на протяжении всего пути (240 Вт в начале пути и, по расчётам, 200 Вт к концу).

Зонды «Галилео» и «Кассини» были также оборудованы источниками энергии, в качестве топлива для которых служил плутоний. Марсоход «Curiosity» получает энергию благодаря плутонию-238. Марсоход использует последнее поколение РИТЭГов, называемое Multi-Mission Radioisotope Thermoelectric Generator. Это устройство производит 125 Вт электрической мощности, а по истечении 14 лет — 100 Вт.

РИТЭГ SNAP-27, применявшийся в полёте «Аполлона-14» (в центре)

Несколько килограммов 238PuO2 использовались на некоторых полётах «Аполлонов» для электропитания приборов ALSEP. Генератор электроэнергии SNAP-27 (англ. Systems for Nuclear Auxiliary Power), тепловая и электрическая мощность которого составляла 1480 Вт и 63,5 Вт соответственно, содержал 3,735 кг диоксида плутония-238.

На Земле

РИТЭГи применялись в навигационных маяках, радиомаяках, метеостанциях и подобном оборудовании, установленном в местности, где по техническим или экономическим причинам нет возможности воспользоваться другими источниками электропитания. В частности, в СССР их использовали в качестве источников питания навигационного оборудования, установленного на побережье Северного Ледовитого океана вдоль трассы Северного морского пути. В настоящее время, в связи с риском утечки радиации и радиоактивных материалов, практику установки необслуживаемых РИТЭГов в малодоступных местах прекратили.

В США РИТЭГи использовались не только для наземных источников питания, но и для морских буев и подводных установок. Например, в 1988 году СССР обнаружил два американских РИТЭГа рядом с советскими кабелями связи в Охотском море. Точное количество установленных США РИТЭГов неизвестно, оценки независимых организаций указывали 100—150 установок на 1992 год.

Плутоний-236 и плутоний-238 применялся для изготовления атомных электрических батареек, срок службы которых достигает 5 и более лет. Их применяют в генераторах тока, стимулирующих работу сердца (кардиостимулятор). По состоянию на 2003 г. в США было 50—100 человек, имеющих плутониевый кардиостимулятор. До запрета на производство[источник не указан 1840 дней]плутония-238 в США, ожидалось, что его применение может распространиться на костюмы водолазов и космонавтов.

ТЭГ своими руками

Создание простейшего генератора в домашних условиях не составит больших трудностей по причине его крайней простоты. По сути, все что нужно, это найти элемент Пельтье. Приобрести такой элемент сегодня не составляет труда и не потребует больших затрат.

Для простейшей демонстрации, кроме термоэлемента, достаточно будет двух алюминиевых банок прямоугольной формы, канцелярского зажима, пары проводов, холодной и горячей воды. Нужно поместить элемент Пельтье между корпусами банок, скрепив их зажимом, налить в одну банку кипяток, в другую холодную воду, желательно со льдом.

Чуть более сложной задачей будет сборка термоэлектрического генератора на дровах. Для этого, помимо термоэлемента, понадобиться камера сгорания, в качестве которой подойдет корпус от компьютерного блока питания, радиатор и вентилятор можно использовать от процессора, разъем USB.

Для тех, кто желает получить более высокое напряжение можно порекомендовать инверторы стабилизаторы — все зависит от фантазии. Инструкций и схем на просторах сети достаточно. Ниже приведена фотография подобного устройства.

Ядерные батарейки РИТЭГ

Радиоизотопный термоэлектрический генератор (РИТЭГ) представляет собой устройство использующее термопары для преобразования тепла, выделяемое при распаде радиоактивного материала, в электричество. Этот генератор не имеет движущихся частей. РИТЭГ использовался в качестве источника энергии на спутниках, космических аппаратах, удаленных объектах маяков, построенных СССР для Полярного круга.

РИТЭГы, как правило, являются наиболее предпочтительным источником энергии для устройств, которым требуется несколько сотен Ватт мощности. В топливных элементах, батареях или генераторах установленных в местах, где солнечные элементы являются неэффективными

Радиоизотопный термоэлектрический генератор требует соблюдения строгих мер осторожного обращения с радиоизотопами в течение долгого времени после окончания его срока службы

В России насчитывается порядка 1 000 РИТЭГов, которые использовались в основном для источников питания на средствах дальнего действия: маяках, радиомаяках и других специальных радиотехнических средствах. Первым космическим РИТЭГом на полонии-210 стал «Лимон-1» в 1962 году, затем «Орион-1» мощностью 20 Вт. Последняя модификация была установлена на спутниках «Стрела-1» и «Космос-84/90». «Луноходы»-1,2 и «Марс-96» использовали РИТЭГ в системах обогрева.

История открытия

Зеебек обнаружил в 1822 году (по иным данным – от 1820 до 1821), что при нагревании спая из разных материалов в замкнутой электрической цепи течёт ток. КПД преобразования составил 3%. Несмотря на столь мизерную цифру, результат первого термоэлектрического генератора соперничал с паровыми машинами того времени. Экспериментируя с пластинками сурьмы и висмута, Зеебек вёл измерения гальванометром Швейггера (катушкой индуктивности и магнитной стрелкой). Следовательно, не начинал эксперименты ранее 16 сентября 1820 года. Кажущаяся необъяснимость и незначительность события заставили учёного повременить. Не торопясь, изучив собственное открытие, Зеебек сделал доклад о нем лишь в 1823 году.

Путём логических рассуждений исследователь предположил, что земной магнетизм объясняется разницей температур между экватором и полюсами. Принцип действия термоэлектрического генератора объяснялся магнитной поляризацией. Зеебек исследовал массу образцов, включая полупроводники, и выстроил материалы в ряд по способности отклонять магнитную стрелку. Эти данные используются (в уточнённом виде) и поныне для конструирования термоэлектрических генераторов. Коэффициент Зеебека измеряется в мкВ/К.

Как учёные с радиоактивными металлами, так Зеебек обращался с образцами. После Второй мировой войны, когда стало известным, что США обладают потрясающим новым оружием, раздался приказ всеми силами ускорить создание ядерного оружия. Заключённые и просто экспериментаторы практически руками соударяли куски радиоактивной породы, чтобы достичь цепной реакции. Большинство в скором времени погибло.

Зеебек остался жив. Он брал руками висмут и сурьму, замыкал цепь и, как некогда Гальвани, наблюдал «животное электричество». Зеебек почти поверил в собственные замечательные трансцендентные способности, но домработница заставила его думать, что причина в нагреве образцов. Когда карьера мага окончательно ушла из рук великого учёного, он вернулся, наконец, к физике. Оказалось, если металлы состыковать плотно и нагревать лампой, стрелка отклоняется ещё дальше.

Первоначально объяснение наблюдаемому эффекту давали необычное и называли магнитной поляризацией. С точки зрения современной науки сложно объяснить подобную позицию, но если взглянуть глазами современников… В сентябре 1820 года Ганс Эрстед доложил научным кругам Франции и Великобритании об открытии, свершившем революцию в следующие 100 лет. Учёный не спешил: заметив странное поведение стрелки морского компаса, долго изучал, оценивал, потом написал нескольким прогрессивно мыслившим современникам… Дальнейшие открытия посыпались чередой:

  1. Закон Ома.
  2. Электромагнит.
  3. Электрокомпас.
  4. Гальванометр.
  5. Индуктивность.
  6. Электродвигатель.

Долго перечислять все изобретения следующих 15 лет, но открытое Зеебеком термоэлектричество оказалось удивительным. Известно, что Георг Ом пользовался парой висмута и сурьмы для вывода известного закона для участка цепи. Во времена Зеебека существовали понятия заряд, магнетизм, электричество, ёмкость конденсатора – и все! Неизвестны были понятия разницы потенциалов, токов, электромагнитный полей и их напряжённости. Это повлияло на название открытия Зеебека.

Накануне Малюс, Френель, Юнг и Брюстер опубликовали работы по поляризации света. Это явление исследовали на основе кристаллов исландского шпата, тогда ввели термин ось (с греч. – полюс, ось). Магнитные полюса обнаруживал Земной шар. Неудивительно, что Зеебек приписал собственной установке подобное странное название. Катушка ориентировала стрелку компаса как планета Земля.

В течение года удалось найти правильное объяснение. Георг Ом использует термопару как источник стабилизированного напряжения для открытия известного закона: задаёт фиксированную разницу температур через точки кипения воды и таяния льда. Пришла пора открывать эру термоэлектричества.

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

   Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Устройство и принцип работы

Принцип работы термоэлектрического генератора, или, как его еще называют, теплового насоса, основывается на преобразовании энергии тепла в электрическую энергию с использованием термических элементов полупроводников, которые связываются между собой параллельно или последовательно.

В ходе проведения исследований немецким ученым был создан совершенно новый эффект Пелтье, в котором указывается, что абсолютно разные материалы полупроводников при проведении спаивания дают возможность обнаружить отличие температур между их боковыми точками.

Но как же понять, как работает данная система? Все довольно-таки просто, такая концепция основана на определенном алгоритме: когда один из элементов охлаждают, а другой нагревают, то мы получаем энергию силы тока и напряжения. Главная особенность, которая выделяет из остальных именно этот метод, заключается в том, что тут могут использоваться всевозможные источники тепла, среди которых недавно отключенная плита, лампа, костер или даже чашка с только налитым чаем. Ну а охлаждающим элементом чаще всего является воздух или же обычная вода.

Как же устроены эти термические генераторы? Они состоят из специальных термических батареек, которые изготавливают из материалов проводников, и тепловых обменников разнородных температур спаев термобатарей.

Схема электрической цепи выглядит следующим образом: термоэлементы полупроводников, ветви прямоугольной формы n- и p-типа проводимой способности, соединенные пластины холодных и горячих сплавов, а также высокая нагрузка.

Среди положительных сторон термоэлектрического модуля отмечают возможность использовать абсолютно во всех условиях, в том числе и в походах, да и к тому же легкость транспортировки. Более того, в них отсутствуют подвижные детали, которые имеют свойство быстро изнашиваться.

А к недостаткам относят далеко не низкую стоимость, низкий коэффициент полезного действия (приблизительно 2–3%), а также важность еще одного источника, который обеспечит рациональный перепад температур

Следует отметить, что ученые активно работают над перспективами усовершенствования и устранения всех погрешностей в получении энергии таким способом. Продолжаются эксперименты и исследования по разработке наиболее эффективных термических батареек, которые помогут повысить значение коэффициента полезного действия.

Однако довольно сложно определить оптимальность этих вариантов, так как они базируются исключительно на практических показателях, не имея при этом теоретического обоснования.

Существует теория, что на современном этапе физиками будет использоваться технологически новый метод замены сплавов на более эффективные, в отдельности с внедрением нанотехнологий. Более того, возможен вариант использования нетрадиционных исходников. Так, в университете Калифорнии был проведен эксперимент, где термические батарейки заменили синтезированной искусственной молекулой, которая выступала как связующий материал золотых микроскопических полупроводников. Согласно проведенным опытам стало ясно, что результативность нынешних исследований покажет лишь время.

Как сделать собственноручно

Далее вкратце повествуем, как сделать генератор своими руками, который можно использовать в природных условиях или обесточенных местах.

Конечно, мощность этих приборов не сравнится с радиоизотопным экземпляром, но из-за трудной доступности плутония и его вредным качествам для человеческого организма, приходится радоваться и этому.

Потребуется элемент термоэлектричества. Лучше их использовать не в единственном экземпляре, подключив параллельно, это увеличит мощность.

Используя один элемент, мощности может не хватить даже зарядить самый простой гаджет.

Еще нужен будет корпус из металла, к примеру, бывшего в употреблении и уже ненужного блока питания от персонального компьютера и элемент охлаждения процессора.

Топливо

Радиоактивные материалы, используемые в РИТЭГах, должны соответствовать следующим характеристикам:

  • Достаточно высокая объёмная активность для получения значительного энерговыделения в ограниченном объёме установки. Минимальный объём ограничен тепловой и радиационной стойкостью материалов, слабоактивные изотопы ухудшают энергомассовое совершенство установки. Обычно это значит что период полураспада изотопа должен быть достаточно мал для высокой интенсивности распадов и распад должен давать достаточно много легкоутилизируемой энергии.
  • Достаточно длительное время поддержания мощности для выполнения задачи. Обычно это значит, что период полураспада изотопа должен быть достаточно велик для заданной скорости падения энерговыделения. Типичные времена полураспада изотопов, используемых в РИТЭГах, составляют несколько десятилетий, хотя изотопы с коротким периодом полураспада могут быть использованы для специализированных применений.
  • Удобный для утилизации энергии вид ионизирующего излучения. Гамма-излучение легко вылетает из конструкции, унося с собой энергию распада. Относительно легко могут улетать также нейтроны. Образующиеся при β-распаде высокоэнергетичные электроны неплохо задерживаются, однако при этом образуется тормозное рентгеновское излучение, уносящее часть энергии. При α-распаде образуются массивные α-частицы, эффективно отдающие свою энергию практически в точке образования.
  • Безопасный для окружающей среды и аппаратуры вид ионизирующего излучения. Значительные гамма-, рентгеновское и нейтронное излучения зачастую требуют специальных конструктивных мер по защите персонала и близкорасположенной аппаратуры.
  • Относительная дешевизна изотопа и простота его получения в рамках имеющихся ядерных технологий.

Плутоний-238, кюрий-244 и стронций-90 являются чаще всего используемыми изотопами. Другие изотопы, такие как полоний-210, прометий-147, цезий-137, церий-144, рутений-106, кобальт-60, кюрий-242 и изотопы тулия были также изучены. Например, полоний-210 имеет период полураспада всего 138 дней при огромном начальном тепловыделении в 140 Вт на грамм. Америций-241 с периодом полураспада 433 года и тепловыделением 0,1 Вт/грамм.

Плутоний-238 чаще всего применяется в космических аппаратах. Альфа-распад с энергией 5,5 МэВ (один грамм даёт ~0,54 Вт). Период полураспада 88 лет (потеря мощности 0,78 % в год) с образованием высокостабильного изотопа 234U. Плутоний-238 является почти чистым альфа-излучателем, что делает его одним из самых безопасных радиоактивных изотопов с минимальными требованиями к биологической защите. Однако получение относительно чистого 238-го изотопа требует эксплуатации специальных реакторов, что делает его дорогим.

Стронций-90 широко применялся в наземных РИТЭГах советского и американского производства. Цепочка из двух β-распадов даёт суммарную энергию 2,8 МэВ (один грамм дает ~0,46 Вт). Период полураспада 29 лет с образованием стабильного <sup>90</sup>Zr. Стронций-90 получают из отработавшего топлива ядерных реакторов в больших количествах. Дешевизна и обилие этого изотопа определяет его широкое использование в наземном оборудовании. В отличие от плутония-238, стронций-90 создаёт значительный уровень ионизирующего излучения высокой проницаемости, что предъявляет относительно высокие требования к биологической защите.

Существует концепция подкритических РИТЭГов. Подкритический генератор состоит из источника нейтронов и делящегося вещества. Нейтроны источника захватываются ядрами делящегося вещества и вызывают их деление. Основное преимущество такого генератора в том, что энергия, выделяемая при реакции деления, гораздо выше энергии альфа-распада. Например, для плутония-238 это примерно 200 МэВ против 5,6 МэВ, выделяемых этим нуклидом при альфа-распаде. Соответственно, необходимое количество вещества гораздо ниже. Количество распадов и радиационная активность в пересчёте на тепловыделение также ниже. Это снижает вес и размеры генератора.

Выведенные из эксплуатации РИТЭГи

Термоэлектрический преобразователь Пельтье

Элемент Пельтье (ЭП) — это термоэлектрический преобразователь, работающий с использованием одноименного эффекта Пельтье, одного из трех термоэлектрических эффектов (Зеебека и Томсона).

Француз Жан-Шарль Пельтье соединил провода меди и висмута друг с другом и подключил их к батарее, создав таким образом пару соединений двух разнородных металлов. Когда батарея включалась, один из переходов нагревался, а другой охлаждался.

Устройства, основанные на эффекте Пельтье, чрезвычайно надежны, поскольку они не имеют движущихся частей, не нуждаются в техническом обслуживании, не имеют выбросов вредных газов, компактны и имеют возможность двунаправленной работы (нагрев и охлаждение) в зависимости от направления тока.

К сожалению, они малоэффективны, имеют низкий КПД, выделяют довольно много тепла, что требует дополнительной вентиляции и увеличивает стоимость устройства. Такие устройства потребляют довольно много электроэнергии и могут вызвать перегрев или конденсацию. Элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются.

Пути развития и повышения КПД[править]

Самым пожалуй важным в развитии термоэлектрогенераторов и увеличения их КПД является — материаловедение, и воспитание специалистов высочайшего класса. Именно вопросы разработки новых материалов являются ключевыми в прогрессе термоэлектрогенераторов.Вот наиболее актуальные направления для ТЭГов:

  • Эффективный термоэлектрический материал: КПД преобразования,термо-ЭДС, пластичность,тонкопленочное исполнение.
  • Эффективный и совместимый с теплообменником жидкометаллический теплоноситель.
  • Расширение использования высококачественной керамики в конструкции ТЭГ.
  • Унификация узлов преспособленных в разных случаях применения.
  • Предельное повышение энергоплотности ТЭГов до уровня автомобильных и авиационных двигателей, и выше.
КПД различных термоэлектрических генераторов и состовляющих их узлов:
Типы термоэлектрогенераторов и основных состовляющих генераторных узлов1965.год.1970.год.1975.год.1980.год.Карно.
Солнечная энергия без концентрации0,80,850,90,920,96
Солнечная энергия с концентрацией0,650,70,750,80,9
Газовые горелки0,50,60,650,70,8
Газовые топки0,750,80,850,90,92
Изотопы0,80,850,90,951,00
Атомные реакторы0,750,80,850,951,00
Низкотемпературные термоэлектрические материалы0,060,080,10,120,5
Среднетемпературные термоэлектрические материалы0,040,060,080,10,35
Высокотемпературные термоэлектрические материалы0,040,050,060,070,23
Каскадные термоэлементы0,120,140,180,200,77
Комутация термоэлектрических батарей0,90,930,950,980,99
Изоляция термоэлектрических батарей0,90,920,950,971,00
Тепловой контакт0,90,930,950,970,99
Теплоноситель0,90,920,930,940,98
Охлаждающее оребрение наземное0,550,6
Охлаждающее оребрение космическое0,80,85
Солнечный космический термоэлектрогенератор без концентратора0,0160,0250,0350,0450,16
Солнечный космический термоэлектрогенератор с концентратором0,0170,0290,0430,0610,25
Солнечный наземный термоэлектрогенератор с концентратором0,0290,0440,0880,1450,59
Газовый термоэлектрогенератор с оребрением0,0130,0230,0300,0430,20
Газовый термоэлектрогенератор с теплоносителем0,020,0350,0730,1750,57
Радиоизотопный термоэлектрогенератор с оребрением0,0210,0320,0490,120,36
Радиоизотопный термоэлектрогенератор с теплоносителем0,0320,0750,1290,240,71
Реакторный космический термоэлектрогенератор0,0160,0230,0440,1130,36
Реакторный наземный термоэлектрогенератор0,030,0470,1210,240,71
Термоэлектрогенератор типа парового котла0,2260,66

Примечание: Коэффициент Карно = 1 соответствует 100%.

Из таблицы заметен существенный рост КПД, связанный прежде всего с тщательным совершенствованием технологий изготовления материалов, рациональным исполнением конструкций, развитием материаловедения в области термоэлектричества.

Полупроводниковые материалы для прямого преобразования энергии[править]

Для термоэлектрогенераторов используются полупроводниковые термоэлектрические материалы, обеспечивающие наиболее высокий коэффициент преобразования тепла в электричество. Список веществ имеющих термоэлектрические свойства достаточно велик(тысячи сплавов и соединений), но лишь немногие из них позволяют в достаточно полной мере использоватся для преобразования тепловой энергии. Современная наука постоянно изыскивает новые и новые полупроводниковые композиции, и прогресс в этой области обеспечивается не столько теорией, сколько практикой, ввиду сложности физических процессов происходящих в термоэлектрических материалах. Определенно можно сказать, что на сегодняшний день не существует термоэлектрического материала в полной мере удовлетворяющего промышленность своими свойствами, и главным инструментом в создании такого материала является эксперимент. Важнейшими свойствами полупроводникового материала для термоэлектрогенераторов являются:

КПД: Желателен как можно более высокий КПД.

Технологичность: Возможность любых видов обработки.

  • Стоимость: Желательно отсутствие в составе редких элементов или их меньшее количество, достаточная сырьевая база(для расширения сфер ассимиляции и доступности).
  • Коэффициент термо-ЭДС: Желателен как можно более высокий коэффициент термо-ЭДС (для упрощения конструкции).
  • Токсичность: Желательно отсутствие или малое содержание токсичных элементов (например:Свинец, Висмут, Теллур, Селен, или их инертное состояние (в составе сплавов).
  • Рабочие температуры: Желателен как можно более широкий температурный диапазон для использования высокопотенциального тепла и следовательно увеличения преобразуемой тепловой мощности.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках. На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Разнообразие модулей «Пельтье»

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).

Пограничные явления в зонах Пельтье

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой. Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Особенности функционирования ТЭМ

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях. Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже). Модуль ТЭМ

Модуль ТЭМ

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Оцените статью:
Оставить комментарий
Adblock
detector