Контроллер для электровелосипеда: схема, особенности подключения, советы при выборе

Содержание

Автомобильный стробоскоп на микроконтроллере PIC10F200

Рейтинг:   / 5

Подробности
Просмотров: 2706

Андрей Сахненко, г. Одесса, Игорь Безверхний, г. Киев
В настоящее время в сети Интернет и радиолюбительской периодике можно встретить целый ряд различных конструкций стробоскопов, используемых для регулировки зажигания автомобилей при их ремонте. Благодаря этому разнообразию и массовости, регулировка опережения зажигания «на слух» стала анахронизмом. Но и автостробоскопы бывают разными. В этой статье рассмотрена схема и конструкция одного из таких приборов. Этот стробоскоп собран в корпусе от светодиодного фонарика «Темп» (фото 1) на микроконтроллере (МК) и сверхъярком светодиоде мощностью 3 Вт. При оптимальных функциональных возможностях он содержит минимум деталей. Автомобильный стробоскоп — это прибор, основное назначение которого — визуальная установка начального момента опережения зажигания карбюраторных двигателей внутреннего сгорания. Он также может использоваться для проверки работоспособности катушки зажигания, при поиске неработающей свечи и контроле работы центробежного и вакуумного регулятора угла опережения момента зажигания. Достоинством предлагаемой конструкции являются также, так называемая, динамическая длительность вспышки и наличие функции индикации зоны оборотов холостого хода.

Схема регулятора

Обратная связь (контроль напряжения фаз двигателя)

WVUW — (R17,R25)V — (R18, R24)U — (R19, R23)ADC0(PC0)ADC1(PC1)ADC2(PC2)AVR444.pdfAtmel12В*5К/(10К+5К) = 4ВAIN1R5R6R7R8R5R6R17,R25R18, R24R19, R23R7, R8AIN1JP1R20, R21, R22JP1, R20, R21, R22

Измерения аналоговых сигналов

ADC5(PC5)R5, R6

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA. Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования — пожалуйста.

Задающие сигналы

RV1ADC4(PC4)R9

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

PD3

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4.

Силовая часть

IR2101IR2101

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540, в реальности использовались K3069. K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость — тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD — может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем «-» батареи, затем подаем «+» на контакт Antispark. Ток течет через резистор и плавно заряжает конденсатор С19. Через несколько секунд, подключаем контакт батареи к VD. При питании 12В можно Antispark не делать.

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Термометр на микроконтроллере PIC12F629. Альтернативная программа

Подробности
Создано 07.07.2014 15:29

Термометр на микроконтроллере PIC12F629 уже неоднократно повторялся читателями сайта, что очень радует. Подтверждение тому следующая статья, за которую огромное спасибо Дмитрию.

Термостат на PIC16F684

Подробности
Создано 18.01.2014 13:47

Проект электронного термостата, описанный далее является логическим продолжением и в чем-то объединением двух предыдущих устройств: Терморегулятор на микроконтроллере PIC16F676и Термосигнализатор с батарейным питанием.  Схема выполнялась по заказу и была изготовлена в количестве 2 экземпляров. Время наработки пока не большое, но работает все исправно.

Сторожевой таймер

Подробности
Создано 21.12.2013 13:23

Сторожевой таймер (Watchdogtimer или WDT) давно стал одним из привычных и полезных устройств, входящих в состав схемы микроконтроллеров. Выполняя функцию сброса, в случае зависания программы, он позволяет защитить оборудование от неприятных последствий. К сожалению, не каждое готовое устройство имеет в своем составе подобный элемент. В некоторых случаях это становится большой проблемой.

Термометр на микроконтроллере PIC12F629. Дополнение

Подробности
Создано 18.12.2013 12:17

Конструкция термометра на PIC12F629 с двумя датчиками вызвала неожиданный интерес. Несколько человек повторили схему. Естественно, что возникли вопросы, и эти вопросы часто повторялись. Данный материал делает попытку обобщения проблем и предлагает некоторые решения.

Термосигнализатор с батарейным питанием

Подробности
Создано 12.10.2013 07:42

Основное назначение термосигнализатора сводится к индикации достижения температурой заранее определенного значения. Автономное питание позволяет схеме выполнять непрерывную индикацию, сводит к нулю проблемы качества сетей электроснабжения и требует меньшего количества проводов для подключения. Использование полупроводникового сенсора с цифровым выходом еще больше упрощает принципиальную схему, и позволяет получить относительно высокие точностные характеристики.

Простой термометр на микроконтроллере PIC12F629 с батарейным питанием.

Подробности
Создано 20.07.2013 09:50

Общее количество конструкций термометров на микроконтроллерах посчитать сложно. Каждый автор стремиться привнести что-то свое в этот простой прибор. В итоге увеличивается функциональность, точность и область практического применения электронных температурных измерителей. Ниже описан еще один вариант термометра, главными особенностями которого стали предельная простота конструкции и автономное питание.

Терморегулятор на микроконтроллере PIC16F676

Подробности
Создано 01.05.2013 13:45

Терморегулирование сегодня является одной из самых ярких и распространенных областей применения автоматики. Оборудование для управления тепловыми процессами можно встретить в каждом доме, автомобиле или промышленном производстве. Применение современной электроники позволяет строить простые и при этом высокофункциональные системы, благодаря использованию датчиков с цифровым выходом, микроконтроллеров и других элементов. Реализовать алгоритм терморегулирования в подобных системах также не составляет особой сложности.

Отличительные особенности МРРТ и ШИМ контроллеров и как это отражается при изготовлении их своими руками

Отличительной особенностью МРРТ моделей, является высокий КПД. Работа подобных приборов основана на поиске максимальной точки мощности, определяемой на соотношении силы тока и напряжения на источнике электрической энергии (солнечная батарея).

ШИМ устройства – это более дешевые приборы, работающие по принципу широтно-импульсной модуляции.

При изготовлении подобных устройств своими руками наиболее просто изготовить ШИМ-прибор, но для использования в автоматическом режиме все-таки лучше МРРТ аналоги, об одном из которых было рассказано выше.

Достоинствами подобных устройств являются:

  • Универсальность использования (гелио и комбинированные системы, ветровые генераторы).
  • Возможность создания оптимальных условий для заряда АКБ, даже при низкой освещенности, что увеличивает срок их эксплуатации;
  • Высокий КПД использования.

Недостатки тоже есть, их можно сформулировать следующим образом:

  • Высокая стоимость у готовых изделий;
  • Сложность при изготовлении своими руками, обусловленная технологией обеспечивающей работу устройства.

В заключение хочется отметить, что даже сложные приборы можно изготовить самостоятельно в домашних условиях, используя электронные комплектующие заводского производства, а главными условиями успеха в этом деле, будет желание и умение работать своими руками.

Спасибо, что дочитали до конца! Не забывайте , Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

Назначение и функции

Среди остальных важнейших опций выделяют:

  • управление токами для корректировки скорости движения;
  • ограничение максимальной мощности электромотора;
  • зарядку аккумулятора во время движения (рекуперацию двигателя);
  • отключение колеса при повышении температуры электронных компонентов в результате перегрузки;
  • снижение вибрационной нагрузки на компоненты для увеличения срока службы самоката;
  • характерную для новых моделей смену полярности, которая обеспечивает движение задним ходом;
  • проверку уровня заряда АКБ для своевременного отключения или понижения мощности привода;
  • питание электрооборудования.

Неожиданные детали работы Windows Firewall, настроенного по умолчанию. И эксперименты по перенастройке

Иногда получается, что при выполнении очередного проекта, я случайно открываю какие-то обстоятельства, которые, вроде, никто не скрывает, можно даже найти документацию, поясняющую суть… Но многие, включая меня, находятся в плену заблуждений, поэтому не ищут ту документацию, полагаясь на совершенно неверную картину мира. У меня уже намечается целый цикл из статей, в которых я просто сообщаю, что всё, оказывается, не так, как многие (включая меня) думали. Была у меня статья про DMA, была статья про производительность шины PCI Express. К этому же циклу можно отнести статью про конфигурационные ПЗУ для ПЛИС Altera.
Сегодня мне хотелось бы рассказать пару слов про работу Windows Firewall, или, как его называют в русифицированной ОС – брандмауэра. В целом, это очень хорошая штука, но в частности… Оказывается, по умолчанию он работает в достаточно интересном режиме. Как говорится: «А пацаны и не знают». Итак, начинаем разбираться, что там к чему.

Видео о бесколлекторных двигателях

STM32 — BLDC Motor Control

STM32 — PMSM Control

Бесколлекторные моторы «на пальцах»

Статьи по бесколлекторным моторам:

  • Что такое Бесколлекторный мотор?
  • Устройство бесколлекторного мотора
  • Как управлять бесколлекторным мотором с датчиками Холла (Sensored brushless motors)
  • Как управлять бесколекторным мотором без датчиков (Sensorless BLDC)
  • Запуск бездатчикового бесколекторного мотора (Sensorless BLDC)
  • Определение положения ротора бесколлекторника в остановленном состоянии
  • Контроллер бесколлекторного мотора. Структура ESC
  • Схема контроллера бесколлекторного мотора (ESC)
  • Силовая часть контроллера бесколлекторного мотора
  • Литература по бесколлекторнм моторам
  • Примеры на С для управления бесколлекторными моторами
  • Схема контроллера бесколлекторного мотора BLDC, PMSM на микроконтроллере STM32
  • STM32. Управление бесколлекторным мотором (BLDC)
  • STM32. Пример регулятора для бесколлекторного PMSM
  • Видео о бесколлекторных моторах. BLDC, PMSM, векторное управление

Смотри также:

  • 1. STM32. Программирование STM32F103. Тестовая плата. Прошивка через последовательный порт и через ST-Link программатор
  • 2. STM32. Программирование. IDE для STM32
  • 3. STM32. Программирование STM32F103. GPIO
  • 4. STM32. Программирование STM32F103. Тактирование
  • 5. STM32. Программирование STM32F103. USART
  • 6. STM32. Программирование STM32F103. NVIC
  • 7. STM32. Программирование STM32F103. ADC
  • 8. STM32. Программирование STM32F103. DMA
  • 9. STM32. Программирование STM32F103. TIMER
  • 10. STM32. Программирование STM32F103. TIMER. Захват сигнала
  • 11. STM32. Программирование STM32F103. TIMER. Encoder
  • 12. STM32. Программирование STM32F103. TIMER. PWM
  • 13. STM32. Программирование STM32F103. EXTI
  • 14. STM32. Программирование STM32F103. RTC
  • 15. STM32. Программирование STM32F103. BKP
  • 16. STM32. Программирование STM32F103. Flash
  • 17. STM32. Программирование STM32F103. Watchdog
  • 18. STM32. Программирование STM32F103. Remap
  • 19. STM32. Программирование STM32F103. I2C Master
  • 20. STM32. Программирование STM32F103. I2C Slave
  • 21. STM32. Программирование STM32F103. USB
  • 22. STM32. Программирование STM32F103. PWR
  • 23. STM32. Программирование STM32F103. Option bytes
  • 24. STM32. Программирование STM32F103. Bootloader
  • STM32. Скачать примеры
  • System Workbench for STM32 Установка на Ubuntu
  • Keil uVision5 – IDE для STM32
  • IAR Workbench – IDE для STM32
  • Управление бесколлекторным двигателем постоянного тока (BLDC) с помощью STM32
  • Управление PMSM с помощью STM32

Успехов.

Оцените статью:
Оставить комментарий