Светодиодная лента rgb: технология, отличие от обычной, подключение
Содержание
- 1 Простая схема соединения RGB светодиода на контроллер Altmega8
- 2 Подключение
- 3 Управление
- 4 Код
- 5 Схемы с емкостными конденсаторами
- 6 5Подключение RGB светодиода с общим катодомк Arduino
- 7 Доработки
- 8 RGB технология
- 9 Схемы подключения светодиодов – как все правильно выполнить
- 10 Виды
- 11 Особенности установки блока питания
- 12 Виды и параметры светодиодных лент
- 13 Что такое RGB светодиодная лента
- 14 Что нужно для подключения RGB ленты
Простая схема соединения RGB светодиода на контроллер Altmega8
Материал позаимствован с :
Соединение RGB диодов с ШИМ Altmega8
Аноды RGB светодиода подключаем к линиям 1,2,3 порта В, катоды соединяем с минусом. Чтобы получить разнообразные палитры цвета на аноды будем подавать ШИМ сигнал в определенной последовательности. В этом примере мы специально используем программный ШИМ, хотя на Atmega8 можно без проблем получить аппаратный ШИМ на 3 канала. Программный ШИМ можно использовать в случаях нехватки таймеров/счетчиков и по другим причинам. Для генерации ШИМ определенной частоты используем прерывание по переполнению 8-ми битного таймера Т0(TIMER0_OVF_vect). Так как предделитель не используем частота переполнения таймера будет равна 31250Гц. А если переменная «pwm_counter» считает до 163, то частота ШИМ будет равна 190 Hz. В обработчике прерываний исходя из значений в переменных pwm_r, pwm_g, pwm_b переключаются ножки порта В. Цветовые эффекты настраиваются с помощью функций, где задается время свечения светодиода. В тестовой программе сначала загораются красный, зеленый, синий, белый цвета, а потом начинается цикл с переходами цвета.
Программный код:
Подключение
В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом.
Рис. 2
Ниже схема с общим анодом:
Рис. 3
Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V).
Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.
Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью. Рис
4
Рис. 4
Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера
Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией).
На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности. Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ
На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета
Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
Рис. 5
На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.
Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета.
Код
Загрузите следующий эскиз на свою плату Arduino:
/ * Все ресурсы для этого проекта: http://randomnerdtutorials.com/ * / int redPin = 3 ; // Красный вывод RGB -> D3 int greenPin = 5 ; // Зеленый вывод RGB -> D5 int bluePin = 6 ; // Синий вывод RGB -> D6 int potRed = A0 ; // Потенциометр управления Красный контакт -> A0 int potGreen = A1 ; // Потенциометр контролирует зеленый контакт -> A1 int potBlue = A2 ; // Потенциометр контролирует синий контакт -> A2 void setup () { pinMode ( redPin , OUTPUT ); pinMode ( bluePin , OUTPUT ); pinMode ( greenPin , OUTPUT ); pinMode ( potRed , INPUT ); pinMode ( potGreen , INPUT ); pinMode ( potBlue , INPUT ); } void loop () { // Считывает текущую позицию потенциометра и преобразует // в значение от 0 до 255 для управления соответствующим выводом RGB с PWM // RGB LED COMMON ANODE analogWrite ( redPin , ( 255. 1023. ) * analogRead ( potRed ) ); analogWrite ( greenPin , ( 255. 1023. ) * analogRead ( potGreen )); analogWrite ( bluePin , ( 255. 1023. ) * analogRead ( potBlue )); // Uncomment для RGB LED COMMON CATHODE / * analogWrite (redPin, 255- (255./1023.) * AnalogRead (potRed)); analogWrite (greenPin, 255- (255./1023) * analogRead (potGreen).); analogWrite (bluePin, 255- (255./1023) * analogRead (potBlue).); * / delay ( 10 ); }
Схемы с емкостными конденсаторами
Подключение мощных светодиодов с емкостными конденсаторами, на первый взгляд, осуществляется довольно простой. Однако в данной ситуации необходимо в первую очередь учитывать мощность резисторов
Также важно помнить, что по параметрам драйверы светодиодов могут довольно сильно отличаться. В связи с этим подбирать конденсаторы для устройства необходимо очень тщательно
В первую очередь оценивается непосредственно блок питания, к которому подсоединяется усилитель. Если рассматривать модификации с пороговым напряжением в 20 В, то емкостный конденсатор в данном случае можно использовать один.
В противном случае их устанавливается два для решения проблем с нелинейными искажениями. В свою очередь чувствительность устройства всегда можно настроить при помощи котроллера. Непосредственно драйвера чаще всего используются импульсного типа. В свою очередь модуляторы можно устанавливать разнообразные. Проблемы с полярностью в данном случае возникнуть не должны. В итоге при блоке питания в 20 В пороговый ток обязан поддерживаться на уровне 3 А. При этом частотность может колебаться в зависимости от скачков напряжения в сети.
5Подключение RGB светодиода с общим катодомк Arduino
Если вы используете RGB светодиод с общим катодом, то подключите длинный вывод светодиода к GND платы Arduino, а каналы R, G и B – к цифровым портам Arduino. При этом нужно помнить, что светодиоды загораются при подаче на каналы R, G, B высокого уровня (HIGH), в отличие от светодиода с общим анодом.
Схема подключения RGB светодиода с общим катодом к Arduino
Если не менять вышеприведённый скетч, то каждый цвет светодиода в этом случае будет гореть 0,2 секунды, а пауза между ними составит 0,1 секунду.
Полезный совет
Если вы хотите управлять яркостью светодиода, то подключайте RGB светодиод к цифровым выводам Arduino, которые имеют функцию ШИМ (PWM). Такие выводы на плате Arduino обычно помечены знаком тильда (волнистая линия), звёздочкой или обведены кружочками.
Доработки
Почему-то совсем не удивляет тот факт, что продаваемая в магазинах лента и остальные компоненты схемы требуют небольших доработок. В блоке питания и контроллерах, обычно, не требуется серьезных вмешательств – разве что крепежные отверстия не всегда расположены удобно, а вот полоска с чипами потребует доработки.
В том виде, в котором продаются ленты, использовать их не рекомендуется. Вам повезет, если провода, припаянные к контактной группе выглядят не так:
В большинстве же случаев, все будет именно так, как на картинке. Контакты, в месте соединения с платой достаточно быстро обломятся, если вообще, переживут монтаж. Требуется вмешательство, в виде насадки из термоусадочной трубки и монтажа специальных наконечников.
Такой переделки достаточно, если длина имеющихся проводков устраивает. Но, как правило, ситуация еще сложнее – приходится полностью отпаивать имеющиеся и прикреплять новые.
RGB технология
RGB – модуль с возможностью настройки и
корректировки параметров на основе трех основных цветов.
Трехцветный светодиод состоит из 3-х разноцветных кристаллов, установленных в 1 корпус. Требуемый цвет получается при помощи различных комбинаций основных (красного, синего и зеленого). За счет близкого расположения свечение смешивается. Для управления требуется контроллер, меняющий цвет по установленной программе.
Трехцветные светодиоды бывают разные:
- с
общим анодом; - с
общим катодом; - с
шестью выводами (без совмещения через анод или катод).
Для управления используется:
- при
совмещенном аноде – подача отрицательных импульсов на анод; - при
совмещенном катоде – подача положительных импульсов на катод; - с
шестью выводами – любой вариант.
Отличия
от обычной ленты
RGB (так же, как одноцветная) – это
эластичная узкая плата с токопроводящими дорожками.
Конструктивно может быть трех видов:
- из
цветных SMD 3528 (5050), которые припаяны рядом по всей протяженности полосы,
контроллер меняется интенсивность свечения отдельно для каждого цвета; - из
трехцветных светодиодов SMD 3528 (5050); - из
светодиодов WS2812B (WS2812S),
оснащенных ШИМ-регулятором.
Независимо от типа светодиодов все RGB ленты
делятся на аналоговые и цифровые. Во-первых, чипы соединены параллельно,
контроллер может менять только цвет полосы. Во-вторых, каждый диод подключен к
микросхеме, позволяющей контроллеру управлять отдельными чипами или их
группами.
Аналоговые RGB-ленты дешевле, установить их проще.
Преимущества
и способы применения
Многоцветные светодиодные ленты дают возможность менять цвет освещения вручную или автоматически, создавать световые эффекты (мерцания, переливы), светомузыку.
Разноцветный источник позволяет создать различные системы освещения:
- основную (мощность подбирается, базируясь на площадь и назначение помещения);
- дополнительную (подсветку отдельных зон);
- освещение рабочего места;
- декоративную.
В жилых помещениях RGB ленты чаще всего
устанавливаются по периметру на потолке или на полу, в нишах и арках, на
мебели. Возможность регулировать цвет и интенсивность свечения позволяет менять
атмосферу в помещениях, сэкономить на освещении лестниц и коридоров.
Но это – не основная сфера применения,
чаще эти источники используются:
- в
витринах магазинов; - в
рекламных щитах; - на
сценах при проведении развлекательных мероприятий; - на
фасадах зданий перед праздниками; - для
подсветки памятников, мостов, фонтанов, бассейнов.
Тип
светодиода
Чаще всего ленты производятся из RGB Led SMD 5050, состоящих из трех кристаллов разного цвета. У этих светодиодов 6 выводов, поток света 0,6-2,5 лм (зависит от цвета кристалла). Мощность рулона длиной 5 м 144 Вт. Другой похожий вариант — SMD 3528 с потоком света 0,3-1,6 лм.
При покупке вид светодиодов легко определяется по размерам (3,5х2,8 мм или 5х5 мм).
На RGB ленте могут быть припаяны так же
разноцветные SMD 3528 (5050). Особенность последних – в одном чипе 3 кристалла
одного цвета. Световой поток в таком исполнении 0,6-2,2 лм у SMD 3528 и 2-8 лм
у SMD 5050.
WS2812B и WS2812S только внешне похожи
на СМД 5050, но имеют 4 вывода и ШИМ-контроллер в корпусе. Он позволяет создавать
различные световые эффекты («звездный дождь», «бегущие огни»). Из этих чипов
можно сделать даже LED-экран. Недостатки два: высокая цена и необходимость в
специальном регуляторе.
Схемы подключения светодиодов – как все правильно выполнить
Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).
Такова схема последовательного подключения световых диодов
Как рассчитать сопротивление светодиода
Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.
Разберемся, как рассчитать сопротивление для светодиода.
Сделать это можно по формуле:
R = (VS – VL) / I,где
- VS–напряжение питания;
- VL –номинальное напряжение для светодиода;
- I – ток светодиода (обычно это 0.02 А, что равно 20 мА).
При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель
Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов
Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.
При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель
Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов
Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.
Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.
Параллельное и последовательное соединение: как они выполняются
По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.
Параллельно подключенные последовательные тройки световых диодов
Подключение световых диодов на 12 В как самый оптимальный вариант
Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.
Идеальная подсветка потолка при помощи светодиодной ленты
Виды
Существует несколько разновидностей RGB светодиодов:
- элементы с общим катодом, которые управляются
положительными сигналами, подаваемыми на аноды чипов. Такие элементы
маркируются буквами CA; - с общим анодом. Команды на изменение режима
работы идут на катоды элементов. Маркировка CC; - собственной парой контактов для каждого
кристалла (6 выводов).
Такое разнообразие вариантов создавалось
для облегчения процессов управления группами устройств. Наибольшую
самостоятельность демонстрирует третья группа — с 6 выводами. Единый
стандарт на распиновку
так и не принят, поэтому в каждом случае необходимо определять тип полярности RGB светодиодов.
Каждый чип может получать питание
от собственного источника. Однако, такая система требует большого количества
проводов или токопроводящих дорожек, поэтому подобные компоненты выпускаются в
формате элементов SMD. Помимо
этого, РГБ компоненты выпускаются в корпусах:
- стандартный круглый вид, оснащенный линзой (для
приборов малой мощности); - корпус «Emitter» для мощных устройств, требующих самостоятельного режима
работы для каждого чипа; - Элементы типа «Пиранья», не нуждающиеся в
установке теплоотводов.
Особенности установки блока питания
Блоки питания для светодиодных лент обычно устанавливаются в соответствии со структурной схемой, которая входит в их комплектацию. В основном перед установкой трансформатора светодиодную ленту разрезают на секции, состоящие из необходимого количества диодов.
Места нарезки обозначены двумя парами контактных групп (с каждого конца секции) и маркером в виде ножниц. Блок питания соединяется параллельно секциям. В процессе подключения необходимо соблюдать полярность (подключать клеммы блока питания с обозначениями «+» и «-» к соответствующим контактам ленты), при этом следует учитывать, что выходное напряжение источника не должно превышать 12 или 24 В (номинальное напряжение ленты). Расположение блока питания не влияет на функциональность устройства, но его нужно подбирать по эстетическим соображениям.
На практике применяются две схемы подключения светодиодной ленты к блоку питания.
Подключение светодиодной ленты к одному блоку питания
Чаще всего светодиодная лента представляет собой цельный пятиметровый отрезок, который намотан на пластиковую катушку. Как правило, с внешней стороны — на незамотанный на катушке конец — к ленте подсоединяются провода, необходимые для соединения с блоком питания. Если же после покупки обнаружилось отсутствие соединительных проводов, то следует взять любые многожильные провода красного («+») и чёрного («-») цвета, отмерить нужную длину, которой должно быть достаточно, чтобы достать до клемм блока питания, и припаять их, предварительно зачистив и облудив оба конца.
- Облуживаем провода, используя канифоль и олово, и методом пайки подсоединяем их к дорожкам ленты. В процессе пайки следует применять маломощный паяльник и производить соединение достаточно быстро, так как есть вероятность того, что от воздействия повышенной температуры светодиоды могут повредиться.
- После этого свободные концы проводов (не припаянные к ленте) подсоединяем к блоку питания, соблюдая полярность.
Подключение двух светодиодных лент к одному блоку питания
В качестве примера рассмотрим следующий вариант: запланирован монтаж и подключение светодиодной ленты, длина которой составляет 8 метров. Проблема в том, что найти кусок ленты такой длины довольно затруднительно, т. к. в основном светодиодные ленты продаются в катушках по 5 метров. Однако всё же требуется 8 метров, и что же делать?
Все достаточно просто. Выполняем следующие действия:
- Приобретаем две катушки со светодиодной лентой, причём один кусок оставляем цельным (5 метров), а от второго отрезаем 3 метра и соединяем их. Для того чтобы отрезать ленту берём обычные ножницы и ищем линию, по которой будем отрезать кусок нужной длины.
- Далее зачищаем и облуживаем контактные площадки обоих кусков ленты (с одной и той же стороны).
- Берём четыре двухжильных провода (два красных «+» и два чёрных «-») и также подготавливаем (зачищаем и лудим).
- Припаиваем к двум кускам ленты. Свободные концы проводов, идущие от пятиметрового куска, припаиваем (привинчиваем) к клеммам блока питания («+V» и «-V»), а к клемам «L» и «N» подсоединяем провода сетевого кабеля.
- Далее на проводах, которые подведены к пятиметровому куску ленты, снимаем небольшие куски изоляции. Затем лудим их и подпаиваем к ним провода от трёхметрового куска, тем самым подключая оба куска ленты параллельно.
Видео: подключение и монтаж светодиодной ленты — 3 главных правила
Разнообразие выбора светодиодных лент поможет воплотить любую мечту и создать поистине красивое освещение, которое выгодно подчеркнёт любое помещение. Использование светодиодной ленты в качестве осветительного прибора придаст дому дополнительный уют и тепло. Однако перед тем как приступить к созданию светодиодной системы освещения, следует ознакомиться с видами изделий и изучить правила подбора питания, чтобы вся система заработала и радовала глаз.
Виды и параметры светодиодных лент
Существует много разновидностей светодиодных лент, различающихся между собой следующими параметрами:
- размерами;
- количеством элементов;
- плотностью их установки;
- цветовой гаммой;
- мощностью;
- напряжением питания и т.д.
Кроме этого, можно разделить существующие образцы по следующим признакам:
- количество цветов — одноцветные или монохромные;
- направление свечения — боковое или фронтальное;
- тип чипа — SMD 3528 или SMD 5050 (наиболее распространенные).
Для изготовления светильников оптимальным образом подойдут образцы относительно малой мощности, поскольку назначение подобных приборов преимущественно декоративное, выбирать слишком яркие элементы нецелесообразно.
Устройство светодиодной ленты
LED-полотно представляет собой узкую полосу, являющуюся гибкой двусторонней печатной платой. На поверхности размещены токопроводящие дорожки, лицевая сторона содержит светодиоды и ограничивающие резисторы. Обратная сторона имеет клеевой слой для удобства монтажа на несущие поверхности или элементы. Чаще всего продается в катушках по 5 метров, но встречаются и другие размеры.
В продольном направлении она условно разделена на небольшие фрагменты по 2,5. 5 или 10 см, каждый из которых содержит 3 чипа и 1 ограничивающий резистор. Длина отрезка зависит от размера светодиодов и плотности их размещения. По границам частей нанесены линии с двумя контактами, по которым ленту можно разрезать и присоединить к источнику питания или другому куску ленты. Это удобно при обнаружении перегоревшего светодиода — можно вырезать проблемный отрезок и вновь соединить рабочие части.
Для LED-полотен с питанием в 220 В кратность деления при разной плотности размещения чипов составляет 50 или 100 см (по 60 светодиодов на один фрагмент).
Все образцы светодиодных лент обладают той или иной степенью защиты. Она обозначается буквами IP и цифрами. Лента со степенью защиты IP20 имеет открытый монтаж элементов (ничем не прикрытых), а IP68 полностью герметична и может использоваться в воде.
Типы применяемых светодиодов
Чипы (светодиоды), используемые в разных видах лент, имеют маркировку SMD 3528 или SMD 5050, но встречаются и другие варианты. Разница между ними заключается в размерах и потребляемой мощности. Аббревиатура SMD означает Surface Mounted Device (устройство, монтируемое на поверхность), а цифры после нее — размеры светодиода. Например, 3528 означает размер 3,5 на 2,8 мм, а 5050 — 5 на 5 мм (две первые цифры — длина, вторые — ширина).
Контроллеры блоки питания для светодиодных лент
Для подключения необходим соответствующий блок питания. Есть ленты, предназначенные для прямого подключения к сети 220 В. Большинство образцов рассчитаны на питание от адаптеров на 12 вольт. Имеются также более поздние разновидности с питанием 24 и 36 В. Но напряжение адаптера — еще не все, нужно учитывать мощность используемых светодиодов. На ленте имеется информация о величине потребляемой мощности.
Если указано значение 12 Вт/м, то для трехметрового отрезка понадобится 36 Вт мощности. Таким образом нетрудно подсчитать мощность блока питания. На основании этих вычислений подбирается готовый адаптер, способный обеспечивать энергией имеющуюся ленту. При выборе устройства следует увеличить расчетную величину на 15-20 %, чтобы иметь запас мощности.
Что такое RGB светодиодная лента
RGB (Red, Green, Blue – красный, зеленый, синий) – это светодиодная лента, способная при работе менять свой цвет. В каждом LED модуле находятся три светодиода – красный, синий и зеленый. Изменяя отдельно яркость свечения каждого кристалла, вы получаете любой цвет видимого спектра.
Что такое rgb светодиод
Внешне RGB led отличается от моноцветной только количеством выводов. Здесь их 4 – три из них для питания каждого отдельного кристалла и один общий плюс.
Существуют особые led ленты с пятью выводами. Маркируются они как LED RGB W (W – white). Пятый вывод отвечает за белый свет. Дело в том, что в трехцветном диоде белый цвет получается смешивая все три цвета в равных пропорциях. Такой «белый» отличается от чистого моно- света. Поэтому появился тип led с четвертым кристаллом белого цвета.
Эти ленты (как и моноцветные) имеют несколько классов пыле- влагозащиты:
- IP20 – без защиты, боится влаги и пыли;
- IP67-69 – не боится пыли, может быть использована во влажной среде (ванна, аквариум).
Что нужно для подключения RGB ленты
Разберемся как правильно подключить светодиодную RGB ленту. Для полноценной схемы освещения нам понадобится:
- Светодиодная лента;
- блок питания;
- RGB-контроллер с пультом управления;
- RGB-усилитель (опционально).
Блок питания
Питание для светодиодной ленты нужно подбирать с учетом предполагаемой нагрузки и его будущего места расположения. Рассмотрим на примере SMD5050 60 led. Потребляемая мощность – 14,4 Вт/м.
При длине в 5 метров, необходимая мощность БП будет:
5м * 14,4Вт * 1,25 (коэффициент запаса) = 90Вт
Разновидности блоков питания для led
Если длина 15 метров, то БП соответственно нужен в 3 раза мощнее – 270W. Если длина ленты 20, 25 и больше метров – целесообразно устанавливать несколько БП меньшей мощности.
Степень защиты зависит от расположения БП. Если располагается в сухом, закрытом помещении достаточно IP20. Если в ванной или других агрессивных условиях, то не ниже IP67.
Подробнее про расчет блока питания для светодиодной ленты.
RGB контроллер
Управление светом осуществляется через специальный контроллер. Он подключается между блоком питания и светодиодами, снабжается проводным или беспроводным пультом.
RGB контроллер
Контроллер, как и блок питания, подбирается в зависимости от суммарной мощности ленты. С тем отличием, что к необходимой мощности БП добавляют 25-30% запаса, а контроллер подбирают впритык по мощности.
Например. Нужно подключить 10 метров SMD5050 60 led. Мощность 1 метра – 14,4 Вт, соответственно нам нужен контроллер на 144 Вт.
По принципу управления различают: проводные – чаще монтируются на стену; беспроводные с управлением через:
- Инфракрасный порт (ИК) – пульт должен находиться в зоне прямой видимости;
- радио-канал – позволяет пользоваться в пределах дома;
- Wi-Fi – позволяют как управлять с пульта, так и с приложения на смартфоне.
Управление освещением со смартфона
После установки и подключения, вы сможете:
- Устанавливать цвет вручную. Доступны как чистые цвета, так и смешанные оттенки.
- Регулировать яркость – аналогично обычному диммеру (подробнее про диммеры).
- Автоматические режимы. К ним относится переключение цветов, быстрое мерцание, плавное изменение, плавные затухания и другие алгоритмы.
А если мощности RGB контроллера не хватает, чтобы подключить все освещение (больше 20 метров)? Можно установить 2 контроллера, но управлять светом одной комнаты придется с двух пультов, что не удобно и дорого. Второй (правильный) вариант — использовать RGB усилитель.
RGB усилитель (led amplifier)
Этот прибор позволяет усиливать и передавать дальше по цепи сигнал от контроллера. Таким образом, задействовав несколько усилителей, можно собрать контур освещения любой длины.
Rgb усилитель (led amplifier)
Усилитель устанавливается в разрыв ленты и имеет отдельное подключение к блоку питания (про подключение ниже). Мощность подбираем исходя из остатка ленты, которой не хватает мощности контроллера.
Наглядный пример. Нужно подключить 20м SMD 3528 (14,4 Вт/м), общей мощностью 288 Вт. В наличии у нас только контроллер с мощностью 216 Вт и блок питания на 300W. Соответственно нужен усилитель:
288 Вт — 216 Вт = 72 Вт
Мощность БП 300 Вт, его достаточно для питания контроллера и усилителя. В случае если мощности БП недостаточно (например 250W), нужен отдельный БП для усилителя.