Неисправности электрооборудования и способы их устранения — принцип действия трансформатора, хх и кз

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Режим холостого хода трансформатора

Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. Такой режим работы может быть у реального трансформатоpa, когда он подключен к сети, а нагрузка, питаемая от его вторичной обмотки, еще не включена.

По первичной обмотке трансформатора проходит ток I, в то же время во вторичной обмотке тока нет, так как цепь ее разомкнута. Ток I, проходя по первичной обмотке, создает в магнитопроводе синусоидально изменяющийся лоток Ф, который из-за магнитных потерь отстает по фазе от тока на угол потерь δ.

Очевидно, что переменный магнитный поток Ф пересекает обе обмотки трансформатора. В каждой из них возникают эдс: в первичной обмотке — эдс самоиндукции Е1, во вторичной обмотке — эдс взаимоиндукции Е2. Действующие значения этих эдс зависят от числа витков в обмотках, магнитного потока Ф и частоты его изменения f. Величины эдс определяют по формулам:

Е1 = 4,44fω1Ф0 макс10-8В,

Е2 = 4,44fω2Ф2 макс10-8В,

где ω1 и ω2 — числа витков в обмотках;

f — частота, Гц;

Ф0 макс — максимальное значение магнитного потока, Вб.

Разделив Е1 на Е2, получим

Е1 / Е2 = ω1 / ω2.

Это соотношение характеризует одно из основных свойств трансформатора: эдс в обмотках трансформатора пропорциональны количеству витков. Отношение числа витков ω1 / ω2 = k называют коэффициентом трансформации.

Таким образом, если мы хотим повысить полученное от генератора напряжение в 10, 100 или 1000 раз, то необходимо так подобрать обмотки трансформатора, чтобы число витков ω2 вторичной обмотки было больше числа витков ω1 первичной обмотки соответственно в 10, 100 или 1000 раз.

Тогда вторичная обмотка оказывается обмоткой высшего напряжения (ВН), а первичная — обмоткой низшего напряжения (НН). Наоборот, если необходимо снизить напряжение в линии, первичное напряжение подводят к обмотке ВН, а к обмотке НН подключают приемники электрической энергии.

Итак, любой трансформатор может работать как повышающий и как понижающий. Все зависит от того, к какой из его обмоток будет подведено напряжение для преобразования. Обмотка трансформатора, к которой подводится энергия преобразуемого переменного тока, называется первичной (независимо от того, будет ли эта обмотка высшего или низшего напряжения). Обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.

Мы рассмотрели действие только рабочего, или основного, магнитного потока Ф. Однако в трансформаторе кроме рабочего существует еще магнитный поток рассеяния Фр1. Этот магнитный поток образуется силовыми линиями, которые ответвляются от основного потока в сердечнике и замыкаются по воздуху вокруг витков обмотки ω1.

Поскольку поток рассеяния замыкается по воздуху, его величина пропорциональна току, в нашем случае — току холостого хода I. Следовательно, поток рассеяния Фр1 является, как и ток I, переменным и, пересекая витки первичной обмотки, создает в ней эдс самоиндукции Ер1. В первичной обмотке трансформатора создаются две эдс самоиндукции: одна E1 — рабочим магнитным потоком Ф, другая Ер1 — магнитным потоком рассеяния.

Мы знаем, что эдс самоиндукции всегда направлена против приложенного напряжения и ее действие на ток в цепи равносильно добавочному сопротивлению, которое называют индуктивным и обозначают х. Для поддержания неизменным тока холостого хода подводимое напряжение U1 должно расходоваться не только на преодоление активного сопротивления r1 обмотки, но и на создание эдс самоиндукции.

Другими словами, приложенное напряжение U1 складывается из нескольких частей: первая часть равна эдс самоиндукции E1 от потока Ф, вторая — эдс самоиндукции Ер1 от потока рассеяния Фр1, третья — активному падению напряжения Ir1.

Режимы работы трансформатора.

Добавочные потери

Добавочные потери pд. К этой группе относят потери, вызванные различными вторичными явлениями при нагрузке машины. Поэтому указанные потери, зависящие от тока нагрузки, называют иногда также добавочными потерями при нагрузке.

В машинах постоянного тока одна часть рассматриваемых потерь возникает вследствие искажения кривой магнитного поля в воздушном зазоре при нагрузке под влиянием поперечной реакции якоря. В результате этого магнитный поток распределяется по зубцам и сечению спинки якоря неравномерно: с одного края полюсного наконечника индукция в зубцах и спинке якоря уменьшается, а с другого края увеличивается. Такое неравномерное распределение потока вызывает увеличение магнитных потерь, подобно тому как неравномерное распределение тока в проводнике (например, в результате поверхностного эффекта) вызывает увеличение электрических потерь. Вследствие такого неравномерного распределения потока увеличиваются также поверхностные потери в полюсных наконечниках. При наличии компенсационной обмотки рассмотренная часть добавочных потерь практически отсутствует.

Рисунок 2. Магнитные потоки рассеяния секции

Другая часть добавочных потерь в машинах постоянного тока связана с коммутацией. При изменении во времени потоков рассеяния коммутируемых секций (смотрите рисунок 2) в проводниках обмотки индуктируются вихревые токи. Добавочный ток коммутации также вызывает дополнительные потери. Существуют также другие причины возникновения добавочных потерь (вихревые токи в крепежных деталях и тому подобное).

Вследствие сложной природы добавочных потерь формулы для их вычисления получаются сложными и, кроме того, не особенно точными. Экспериментальное определение этих потерь также затруднительно. Поэтому на практике добавочные потери чаще всего оценивают на основе опытных данных в виде определенного процента от номинальной мощности. Согласно ГОСТ 11828-86, эти потери для машин постоянного тока при номинальной нагрузке принимаются: при отсутствии компенсационной обмотки равными 1,0% и при наличии компенсационной обмотки равными 0,5% от отдаваемой мощности для генератора и подводимой мощности двигателя. Для других нагрузок эти потери пересчитываются пропорционально квадрату тока нагрузки.

Все виды добавочных потерь, не связанные непосредственно с электрическими процессами в цепях обмоток машины, покрываются за счет механической мощности на валу машины.

Приведенные и расчетные нагрузки потребителей

Расчетная схема
замещения участка сети представляет
собой довольно сложную конфигурацию,
если учитывать полную схему замещения
ЛЕП и трансформаторов. Для упрощения
расчетных схем сетей с номинальным
напряжением до 220 кВ включительно вводят
понятие “приведенных”,
“расчетных” нагрузок.

Приведенная к
стороне высшего напряжения нагрузка
потребительской ПС представляет собой
сумму заданных мощностей нагрузок на
шинах низшего и среднего напряжений и
потерь мощности в сопротивлениях и
проводимостях трансформаторов.
Приведенная к стороне высшего напряжения
нагрузка ЭС представляет собой сумму
мощностей генераторов за вычетом
нагрузки местного района и потерь
мощности в сопротивлениях и проводимостях
трансформаторов.

Расчетная нагрузкка
ПС или ЭС определяется как алгебраическая
сумма приведенной нагрузки и половин
зарядных мощностей ЛЕП, присоединенных
к шинам высшего напряжения ПС или ЭС.

Зарядные мощности
определяются до расчета режима по
номинальному, а не реальному напряжению,
что вносит вполне допустимую погрешность
в расчет.

Возможность
упрощения расчетной схемы при использовании
понятий “при-веденных”
и “расчетных” нагрузок показано на
рис. 7.3.

Свойства электротехнической стали

Ценность легированного кремнием железа обусловлена его улучшенными электромагнитными характеристиками: высокий уровень индукции насыщения, минимизация потерь на гистерезис, а также пониженная коэрцитивной сила. Поскольку анизотропная структура позволяет еще больше улучшить эти свойства, то спрос не текстурованные стали изначально выше.

Вопрос, для каких целей применяют электротехнические стали, находит ответ в наименовании металла. Одно из предназначений сплава –  это сердечники в таких устройствах:

трансформаторов тока;

статоры и роторы электрооборудования;

силовых трансформаторов.

Силовой трансформатор

Кроме того, электротехническая сталь – отличный материал для магнитопроводов в составе электрических аппаратов. Понять, почему сердечник трансформатора выполняют из электротехнической стали несложно. Это следует из свойств металла, в частности повышению удельного электрического сопротивления. Это, в свою очередь, приводит к уменьшению потерь мощности от вихревых токов, характерных для сердечника трансформатора. Как результат, повышается общая эффективность устройства, а сам сердечник меньше нагревается.

Еще больше нивелировать потери от вихревых токов, можно уменьшив толщину пластин. Поэтому электротехническая сталь для электродвигателей, в частности сердечников трансформаторов, должна иметь толщину 0.5 мм при частоте 50 Гц. Если источник тока работает на больших частотах, под сердечник используют более толстые листы электротехнической стали: 0.1 или 0.2 мм.

Дополнительные потери энергии в сердечнике трансформатора происходят вследствие гистерезиса – процесса циклического перемагничивания. Сузить петлю гистерезиса, соответственно уменьшить ее площадь приведут к понижению потерь на перемагничивание. Это вторая причина использования электротехнической стали в сердечнике трансформатора.

Поскольку снижение потерь на вихревые токи и гистерезис достигается повышением содержания кремния в металле, сплав с высокой концентрацией Si получил название трансформаторная сталь, характеристики которой лучше подстроены именно под трансформаторы. Выражаясь языком цифр, в производстве мощных трансформаторов использование текстурованной стали позволяет уменьшить уровень потерь на треть. Кроме того, это способствует снижению массы трансформатора на 10% и расхода самого металла на 20%.

Сбор сердечника трансформатора

Кроме трансформаторов, электротехническая сталь, в зависимости от марки применяется для:

магнитных цепей при изготовлении электрического оборудования – марки 2212, сернистая изотропная, 20895/20880 АРМКО;

электродвигателей и подобных изделий – марка 10895/Э12/АРМКО;

прочая электротехническая продукция – марка10880/Э10/АРМКО.

Назначение некоторых марок стали электротехнической:

Марка стали

Назначение
1211, 1212, 1213, 22110Для якорей и полюсов электрических машин постоянного тока, для роторов и статоров асинхронных двигателей промышленной частоты мощностью до 100 кВт, для магнитопроводов приборов. Пластичность высокая.
1311, 1312Для роторов и статоров асинхронных двигателей мощностью от 100 до 400 кВт. Пластичность хорошая.
1411, 1412, 2411Для роторов и статоров асинхронных двигателей мощностью 400 -1000 кВт, маломощных силовых трансформаторов, для двигателей повышенной частоты. Пластичность удовлетворительная.

Электрические потери

Электрические потери pэл в каждой обмотке вычисляют по формуле pэл = I² × r. Сопротивление обмотки зависит от температуры. Поэтому ГОСТ 25941-83 предусматривает определение потерь в обмотках при приведении их к рабочей температуре (75°C для классов обмоток A, E и B и 115°C для классов F и H). В нормальных машинах постоянного тока имеются две электрические цепи: цепь якоря и цепь возбуждения. Поэтому обычно рассматривают потери в цепи якоря pэл.а и в цепи возбуждения pэл.в.

Потери в обмотках можно выразить также через плотность тока в обмотке j и массу обмотки (без изоляции) G. Действительно,

где l – общая длина проводников обмотки; s – сечение проводника; γ – плотность проводника; ρ – удельное сопротивление.

Но

(I / s)² = j² и l = G.

Поэтому

Например, для меди γ = 8,9 г/см³ и при 75°C ρ = 1/4600 Ом×мм ²/см. Если выразить, далее, j в А/мм², то получим

(7)

Таким образом, формула (7) определяет потери в ваттах в медной обмотке массой G кг при 75°C и при плотности тока j А/мм².

К электрическим потерям относят также потери в регулировочных реостатах и потери в переходных сопротивлениях щеточных контактов. Потери в переходных сопротивлениях щеточных контактов для щеток одной полярности вычисляются по формуле

pэл.щ = ΔUщ × I ,(8)

где ΔUщ – падение напряжения на один щеточный контакт. Так как ΔUщ зависит сложным образом от разных величин и факторов, то для упрощения расчетов, согласно ГОСТ 11828-86, «Машины электрические вращающиеся. Общие методы испытаний», принимается для угольных и графитовых щеток ΔUщ = 1 В и для металлоугольных щеток ΔUщ = 0,3 В.

Определение потерь мощности и электроэнергии в линии и в трансформаторе

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности  (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают  ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают  ?Рк.

?Рк– потери короткого замыкания;

?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;

Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:

Потери реактивной мощности в трансформаторе

где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?Qх.

?Qх – намагничивающая мощность холостого хода трансформатора;

?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.

Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас  определяют по данным каталогов из следующих выражений:

Формулы для расчета потери реактивной мощности

где Iх – ток холостого хода трансформатора, %;

Uк – напряжение короткого замыкания, %;

Iном – номинальный ток трансформатора, А;

Xтр – реактивное сопротивление трансформатора;

Sном – номинальная мощность трансформатора, кВА.

Потери электроэнергии.

На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.

Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.

Время максимальных потерь ? – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.

Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с  максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия  переданная по линии за некоторый промежуток времени,  Рмах(кВт) -максимальная нагрузка, тогда время использования  максимальной нагрузки:

Тмах=W/Рмах

На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:

  • Для внутреннего освещения – 1500—2000 ч;
  • Наружного освещения – 2000—3000 ч;
  • Промышленного предприятия односменного – 2000—2500 ч;
  • Двухсменного – 3000—4500 ч;
  • Трехсменного   – 3000—7000 ч;

Время потерь ? можно найти по графику, зная Тмах и коэффициент мощности.

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.

Потери энергии в линии:

Потери энергии в линии

Потери энергии в трансформаторе:

Потери энергии в трансформаторе

где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;

?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.

Устройство и принцип действия

В статическом оборудовании, которое предназначено для преобразования частоты и напряжения тока, а также количества фаз, отсутствуют движущиеся элементы конструкции, что исключает возникновение потерь механического характера. Но в процессе передачи нагрузки с первичного контура на вторичный не вся мощность доходит до приемника энергии, выступающего конечным потребителем.

Электромагнитное статическое оборудование без вращающихся деталей преобразует энергию и работает от электросети. Силовой агрегат представляет собой прибор, основными элементами которого служат стальной магнитопровод стержневого или броневого исполнения и катушки – несвязанные электрически изолированные провода.

Трансформаторное оборудование бывает однофазного и многофазного типа, соответственно, состоящего из двух или более контуров. По типу исполнения различают приборы с броневым, стержневым или бронестержневым магнитопроводом. Принцип действия оборудования на примере простого однофазного прибора:

  • К источнику переменного тока подключена первая катушка, а вторичный контур соединен с приемником электроэнергии (конечным потребителем).
  • Переменный ток проходит по виткам первичной обмотки, и его величина соответствует значению нагрузки I1.
  • Магнитный поток Ф пронизывает оба контура и индуцирует в проводниках электродвижущую силу.
  • При подключении второго контура к источнику электроэнергии в цепи под действием ЭДС возникает ток нагрузки I2.
  • Трансформаторный узел работает на холостом ходе, если на вторичную обмотку прибора не подается нагрузка.

Особенности

Величина показателя электродвижущей силы тесно связана с числом витков провода на катушках. Соотношение ЭДС в обмотках, называемое коэффициентом трансформации, соответствует числу витков медных катушек. Изменяя количество витков в контурах, можно регулировать напряжение в приемнике электроэнергии.

Обмотки связаны между собой магнитными линиями, а на степень их взаимосвязи влияет близость/дальность расположения катушек. Из-за изменения силы тока в первой обмотке, обе цепи пронизывает магнитный поток, постоянно меняющий свою величину и направленность. Соединение концов вторичной обмотки с приемником передает ему ток, а средством передачи энергии выступает переменный магнитный поток – катушки не связаны друг с другом гальваническим способом.

Стоит также учесть, что нельзя размыкать вторичную обмотку трансформатора.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Оцените статью:
Оставить комментарий
Adblock
detector