Можно ли соединять параллельно аккумуляторы разной емкости

Последовательное соединение источников

Это всем известная батарея из элементов, «банок». Последовательно — это значит, плюс первого вывести наружу — будет плюсовая клемма всей батареи, а минус соединяется с плюсом второго. Минус второго — с плюсом третьего. И так далее до последнего. Минус предпоследнего присоединен к его плюсу, а его минус выводится наружу — вторая клемма батареи.

При последовательном соединении аккумуляторов складывается напряжение всех банок, и на выходе — клеммах плюс и минус батареи — получится сумма напряжений.

Например, аккумулятор автомобильный, имея в каждой заряженной банке примерно 2,14 вольта, дает в сумме из шести банок 12,84 вольт. 12 таких банок (аккумулятор для дизелей) дадут 24 вольта.

А емкость такого соединения остается равной емкости одной банки. Ввиду того, что напряжение на выходе выше, номинальная мощность нагрузки возрастает и расход энергии будет быстрее. То есть все разрядятся сразу вместе как один элемент.


Последовательное соединение аккумуляторов

Такие аккумуляторы заряжаются тоже в последовательном соединении. К плюсу подключается плюс питающего напряжения, к минусу — минус. Для нормальной зарядки нужно, чтобы все банки были одинаковыми по параметрам, из одной партии и одинаково дружно разряжены.

Иначе, если они разряжены чуть по-разному, то при зарядке один закончит зарядку раньше других и у него начнется перезарядка. А это может для него плохо кончиться. То же самое будет наблюдаться при разной емкости элементов, что, собственно говоря, одно и то же.

Последовательное соединение элементов питания было испробовано с самого начала, практически одновременно с изобретением гальванических элементов. Алессандро Вольта создал свой знаменитый вольтов столб из кружочков двух металлов — меди и цинка, которые перекладывал тряпочками, пропитанными кислотой. Сооружение оказалось удачной придумкой, практичной, да еще давало напряжение, вполне достаточное для смелых тогдашних опытов по изучению электричества — достигало 120 В, — и стало надежным источником энергии.

Некоторые особенности аккумуляторов

Классический аккумулятор — автомобильный свинцово-сернокислый. Выпускается в виде последовательно соединенных в батарею аккумуляторов. Его использование и зарядка/разрядка хорошо известны. Опасными факторами у них являются едкая серная кислота, имеющая концентрацию 25–30%, и газы — водород и кислород, — которые выделяются при продолжении зарядки после того, как она химически закончилась. Смесь газов, являющихся результатом диссоциации воды, как раз и является хорошо известным гремучим газом, где водорода ровно в два раза больше, чем кислорода. Такая смесь взрывается при любом удобном случае — искре, сильном ударе.

Аккумуляторы для современной аппаратуры — мобильников, компьютеров — делаются в миниатюрном исполнении, для их зарядки выпускаются зарядные устройства разного исполнения. Многие из них содержат схемы управления, позволяющие отследить окончание процесса зарядки или заряжать все элементы сбалансированно, то есть, отключая от устройства те из них, которые уже зарядились.

Большинство этих аккумуляторы довольно безопасны, и неправильная разрядка/зарядка может повредить только их самих («эффект памяти»).

Это касается всех, кроме аккумуляторов на основе металла Li — лития. Экспериментов с ними лучше не проводить, а заряжать только на специально для него предназначенных зарядных устройствах и работать с ними только по инструкции.

Причиной является то, что литий очень активен. Это третий после водорода элемент периодической таблицы, металл, который активнее натрия.

Во время работы с литий-ионными и другими батарейками на его основе, металлический литий может постепенно выпадать из электролита и однажды произвести внутри элемента замыкание. От этого он может загореться, что приведет к катастрофе. Так как погасить его НЕЛЬЗЯ. Он горит без доступа кислорода, при реакции с водой. При этом выделяется большое количество теплоты, и к горению присоединяются и другие вещества.

Случаи возгорания мобильных телефонов с литий-ионными аккумуляторами известны.

Однако инженерная мысль идет вперед, создавая все новые заряжаемые элементы на основе лития: литий-полимерный, литий-нанопроводниковый. Стараясь преодолеть недостатки. И они как аккумуляторы очень хороши. Но… от греха подальше лучше не делать с ними тех нехитрых действий, которые описаны ниже.

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

Давайте рассмотрим как это нужно делать. На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.
В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное. Последовательное соединение: При последовательном соединении элементов складываются и величины их внутренних сопротивлений. Тогда она будет выглядеть вот так согласитесь, проще некуда: пара резисторов и один кондер : Один из вариантов печатной платы доступен по этой ссылке.


Теперь допустим, что мы разряжаем эту же последовательную цепь. И можно подключать аккумулятор. Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда схемы смотрите в этом разделе.

Параллельное соединение батарей с формулами Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке. На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно.

Подобная схема приведена в следующем варианте. Вот как эта плата установлена в литий-ионный АКБ. Тогда она будет выглядеть вот так согласитесь, проще некуда: пара резисторов и один кондер : Один из вариантов печатной платы доступен по этой ссылке. Аккумулятор разрядился ниже 2,5V. Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться.
Плата защиты LI-ION — КАК ЭТО РАБОТАЕТ?

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на  рисунке ниже).

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

Параллельное соединение

Последовательное соединение конденсаторов

Если автомобилю требуется больше пусковой мощности, чем может обеспечить батарея, соединяются несколько аккумуляторов параллельно.


Схема параллельного соединения аккумуляторов

По практическим соображениям (в основном, вес и размер корпуса) АКБ имеют ограниченную емкость. 12-вольтовые аккумуляторы производятся емкостью до нескольких сотен Ач. Хорошая батарея на 200 Ач весит 60-70 кг. Из-за этого главным образом используются аккумуляторы до 250 Ач. Однако очень часто потребности превышают данную емкость. В таких случаях можно применить параллельное соединение аккумуляторов. Благодаря этому решению, блоки с батарейками не имеют ограничения по пропускной способности, и в то же время их сборка, разборка, перемещение возможны без грузоподъемного оборудования.

Например, чтобы получить емкость 400 Ач и 12 В, надо соединить следующие аккумуляторы:

  • две батареи 200 Ач (2 х 200 Ач = 400 Ач);
  • пять батарей 80 Ач (5 х 80 Ач = 400 Ач);
  • две батареи 100 Ач и одна 200 Ач (2 х 100 Ач + 200 Ач = 400 Ач).

Аналогично любые другие комбинации.

Емкость созданного таким образом набора равна сумме емкостей отдельных аккумуляторов. При этом надо соединить одноименные полюса батарей.

Подключение аккумулятора

Как подключить аккумулятор к нагрузке, зависит от числа элементов и нагрузочного тока:

  1. При небольшом количестве аккумуляторов и нагрузке или зарядке с малым током различия в отдаче энергии отдельных элементов будут незначительны. Можно подключать нагрузку и зарядку к первой батарее;
  2. Способ подсоединения, когда «минус» к нагрузке и зарядке подсоединяется от первой батареи, а «плюс» – от последней, рекомендуется для балансировки аккумуляторов под нагрузкой во время зарядки с высоким током или, когда в параллель подключается много элементов. Это позволяет оптимизировать распределение напряжения.


Предпочтительное подключение параллельно соединенных элементов

Принципы параллельного подключения

Наилучшие результаты можно получить, объединив аккумуляторы с одинаковыми параметрами:

  • емкость;
  • степень износа;
  • внутреннее сопротивление.

Хотя требования к аналогичности параметров в данном случае намного ниже, чем, когда используется последовательное соединение аккумуляторов. Основным условием является идентичное номинальное напряжение. Но можно комбинировать:

  • батареи различной емкости;
  • аккумуляторы разных производителей;
  • даже значительно отличающиеся по степени износа.

Важно! В случае параллельного подключения нельзя использовать поврежденные батареи с низким внутренним сопротивлением. Применение поврежденных или сильно изношенных аккумуляторов экономически необоснованно – они потребляют энергию оставшихся элементов, что снижает доступную мощность всего комплекта

Проверка подключения

Перед сборкой нескольких аккумуляторов следует проверить каждую батарею отдельно. Это позволит избежать потерь и даже выхода из строя элементов.

  1. Использование батареи с очень низкой емкостью не опасно, но не имеет смысла, так как не способно увеличивать мощность, однако возрастет риск будущих проблем;
  2. Если оставить комбинацию параллельных батарей подключенной, при одной из них с низким током короткого замыкания и потребляющей много энергии, то сохранение этого состояния в течение длительного времени приведет к разрядке других батарей и ограничению эффективности;
  3. Аккумулятор с небольшим током короткого замыкания, но имеющий значительную емкость может быть полезен, только если энергия потребляется в течение короткого времени после окончания зарядки. Такой комплект требует постоянного контроля, поскольку сопротивление нагрузки может упасть до опасного уровня;
  4. Проверенные батареи следует заряжать так, чтобы их напряжение было одинаковым. Параллельное соединение заряженных и разряженных аккумуляторов приводит к внезапному сильному току. Заряженный элемент будет быстро разряжаться, а разряженный еще быстрее. Масштаб этого явления зависит от разности напряжений и мощностей.

Например, для аккумулятора 200 Ач не будет опасным подключение второго на 7 Ач, независимо от уровня разряда. В то же время с разностью напряжения во время подключения небольшая батарея будет испытывать значительную потерю мощности, что может довести вплоть до повреждения ее корпуса.

Параллельное соединение источников питания

Но что будет, если источники питания соединить параллельно? Давайте же рассмотрим это с точки зрения той же самой гидравлики. Имеем те же самые башни, в которых воды до самых краев:

Нет, здесь мы не будет извращаться. Мы просто соединим наши башни у самого основания трубой:

Давление на дно у каждой башни изменится? Думаю, нет. Оно останется таким же, как в одной из башен. А что поменялось? Поменялся просто объем воды. Ее стало в 2 раза больше.

Но вы можете сказать, что в первом случае у нас тоже воды стало в 2 раза больше!

Да, все оно так, но здесь важное значение имеет именно то, что давление на дно башни изменилось и стало также в два раза больше. Если сделать врезку одинакового диаметра прямо у подножия водобашни, то  в случае, когда водобашни стоят одна на другой сила потока воды будет в два раза быстрее, чем если бы мы делали точно такую же врезку на картинке, где мы соединяли водобашни трубой

Более подробно эту мысль я еще озвучивал в статье про Закон Ома.

Если всю эту мысль спроецировать на наши источники питания, то получается, что при последовательном соединении у нас суммировалась напряжение, а при параллельном должна суммироваться сила тока. Но это не значит, что нагрузка, которая кушала, к примеру, 1 Ампер, после того, как мы ее цепанем к двум параллельным источникам питания, будет кушать 2 Ампера. При параллельном соединении у нас напряжение остается таким же, а вот емкость батарей увеличивается. Но нагрузка все равно будет кушать тот же самый 1 Ампер, иначе бы все это противоречило закону Ома.

Настало время все это рассмотреть на реальном примере. Итак, замеры мы уже делали. Осталось соединить два источника питания параллельно, в нашем случае это аккумуляторы li-ion:

Как вы видите, напряжение не изменилось.

При параллельном соединении источников питания должно соблюдаться условие, что на них должно быть одинаковое напряжение.

Вот сами подумайте, что может произойти, если одна из башен будет пустая?

Думаю, нетрудно догадаться, что вода из одной башни будет перетекать в другую башню, пока их уровень не выровняется (закон сообщающихся сосудов), если у одной башни сломался насос и она пустая.

То же самое и с источниками питания. Нельзя соединять источники питания разных напряжений параллельно. Это чревато тем, что вы убьете здоровые аккумуляторы, а дохлые так и останутся дохлыми или чуток зарядятся. Если разница между напряжениями аккумулятора большая, то в такой цепи может течь бешеная сила тока, которая вызовет нагрев и даже возгорание аккумуляторов.

Нельзя соединять источники питания разных напряжений параллельно

Способы подключения приборов

Специалисты в сфере проектирования и организации комплексов обогрева выделяют три основные типа, отличающиеся по алгоритму реализации и эффективности. Каждый из них имеет свои преимущества, проявляющиеся в конкретных условиях функционирования. Подключение бывает

Боковое

Предполагает присоединение радиатора к главной линии с одной стороны. При этом вход воды располагается вверху, выход – внизу для обеспечения максимально равномерного прогрева секций или поверхности панели. Такой способ установки считается эффективным, так как процент неохваченной площади теплообмена составляет не более 10%. Чаще всего последовательное боковое подключение батарей отопления выполняется в квартирах многоэтажных домов, являющихся потребителями централизованной коммунальной сети.

Зачастую такая схема дополняется байпасом – трубой меньшего диаметра, соединяющей подающую и обратную магистрали. Это приспособление дополняется запорными кранами, отсекающими прибор от системы.

Диагональное

Позволяет максимально задействовать площадь теплообмена отопительного прибора. Получаемая при этом мощность является эталонной и указывается в паспорте к товару. Для реализации этой схемы подключения необходимо вход в радиатор расположить вверху с одной стороны, выход – внизу с другой. За счёт этого поток рабочей среды равномерно пройдёт через все внутренние каналы.

Этот способ идеально подходит для батарей с большим количеством секций. Именно диагональная обвязка позволяет наиболее полно реализовать преимущества, которые даёт последовательное соединение отопительных радиаторов.

Среди её недостатков стоит выделить

  1. увеличенные расходы на стройматериалы по сравнению с боковым подключением
  2. невозможность спрятать коммуникации в стену или пол
  3. сложность проведения монтажных работ

Нижнее

Наиболее эстетичный способ интеграции прибора в систему, когда и вход, и выход теплоносителя находятся в нижней части корпуса с разных сторон. В этом случае трубы чаще всего прячутся под напольное покрытие и бетонную стяжку. В связи с этим обустройство такой схемы возможно на стадии строительства и ремонта.

Если соединение батарей отопления выполняется последовательно, при нижнем подключении возможна потеря до 15-20% КПД системы. Это происходит из-за того, что воде несколько проблематично подняться по внутренним коллекторам в верхнюю часть корпуса прибора. В результате некоторые участки прогреваются недостаточно.

Особенности использования

При сборке той или иной схемы, желательно использовать аккумуляторы одинаковой технологии, ёмкости и напряжения. Различие номиналов приведут к нарушению режимов работы отдельных ячеек.

Рассмотрим ситуации, возникающие с батареями, собранными из трёх элементов с различными номиналами: G1=10А/ч, G2=20А/ч, G3=15А/ч, которые питают нагрузку током, величиной 1 ампер:

Ситуация №1, Элементы G1, G2, G3 соединены последовательно. В процессе работы  режим разряда проблем не вызывает. Спустя 10 часов G1 разрядится полностью, G2 – наполовину, G3 — на две трети. При последующем заряде, как было сказано выше, через всю цепочку протекает ток одной величины. Ввиду наличия остаточного заряда одни элементы окажутся перезаряжены, другие недозаряжены.

Ситуация №2. Элементы G1, G2, G3 соединены параллельно. Подобно случаю с последовательной схемой, работа в режиме разряда происходит нормально. В процессе заряда каждый элемент примет ток в соответствии со своим внутренним сопротивлением. Однако, элемент G2 с большим остаточным зарядом будет иметь более высокое напряжение. Так как условием окончания зарядки в автоматических зарядных устройствах (ЗУ) является определённый уровень напряжения, то как только G2 достигнет точки отключения, заряд прекратится, а G1 и G3 останутся недостаточно заряжены. Если ЗУ не отключается автоматически, можно продолжить зарядку до достижения окончательного наполнения всех элементов, но при этом G2 и G3 окажутся перезаряженными.

В обеих ситуациях неравномерность заряженности приведёт к быстрому исчерпанию ресурса одного или нескольких элементов, понадобится их замена. Для реализации нормальных зарядных режимов можно заряжать каждую ячейку отдельно, но это потребует втрое больше времени, либо наличия трёх зарядных устройств.

Следует иметь в виду, что соединять параллельно разные по напряжению аккумуляторы категорически запрещено. Энергия от источников с более высоким потенциалом будет перетекать в элементы с низким напряжением, вызывая критический разряд первых. Так, например, нельзя соединять параллельно 1,2 вольтовые NiCa или NiMH c аккумуляторами типа 18650, так как последние выполнены по Li-ion технологии и имеют номинальное напряжение 3,7В, а критически низким для них является уровень 2.7-3В.

Последовательно можно соединять аккумуляторы любых типов и ёмкостей, но только в режиме разряда, для запитывания какой-либо нагрузки. Нормально зарядить такую цепочку в собранном виде не удастся по описанным выше причинам.

Даже если все компоненты батареи имеют одинаковые номиналы, со временем потеря ёмкости происходит неравномерно, что приводит к изменению режима заряда. Если для прочих типов источников энергии это не очень критично, то литиевые аккумуляторы весьма чувствительны даже к небольшим отклонениям от номинальных параметров заряда. Несоблюдение регламента резко сокращает срок службы аккумулятора. Для устранения этой проблемы для батарей на базе Li-ion и Li-Fe применяют балансировочные зарядные устройства. Такое ЗУ контролирует состояние каждого элемента в отдельности и не допускает перезаряда отдельных ячеек.

Последовательное и параллельное соединение аккумуляторов: видео

  • Срок службы аккумулятора автомобиля
  • Как завести машину, если сел аккумулятор
  • Как проверить емкость аккумулятора мультиметром

Проверка работоспособности системы

В первую очередь убедитесь, что аккумуляторы целые, без трещин, без ржавчины и следов окислов. Провода на клеммах должны быть хорошо закреплены. Если внешне все в порядке, можно проверить напряжение и силу тока.

  1. Проверка падения напряжения при подключении нагрузки. К системе подключается нагрузка определенной величины и измеряется падение напряжения мультиметром или вольтметром. Можно провести проверку несколько раз, делая паузы между измерениями, чтобы дать заряду восстановиться. Полученные данные нужно сравнить с параметрами используемого типа батареи с учетом величины нагрузки.
  2. Измерение напряжения без нагрузки. У разных типов акб свои значения напряжения разомкнутой цепи. Например у свинцово-кислотного это 12,6 В.
  3. Использование нагрузочной вилки. Если в течение 5-10 секунд напряжение незначительно возрастает или стабильно, то система исправна.
  4. Проверка с помощью специальных анализаторов и тестеров. Можно быстро замерять напряжение и определять емкость с помощью приборов-тестеров, например, Кулон, PITE, Fluke, Vencon.
  5. Полная разрядка / зарядка. Это, пожалуй, самый достоверный способ. С помощью специальных устройств (УКРЗ) выполняется глубокая разрядка, а затем полная зарядка с непрерывным контролем емкости. Однако этот метод очень долгий, он может занимать от 15 часов до суток и более.

Напоследок несколько советов о том, как соединить аккумуляторы 18650:

  • лучше брать батареи фирм Panasonic, LG, Samsung или Sanyo;
  • никелевые полосы лучше, чем никелированные металлические;
  • аккумуляторы ни в коем случае нельзя перегревать, поэтому используйте точечную сварку, либо быструю пайку;
  • перед единением выравняйте напряжение на батареях с помощью зарядного устройства;
  • поставьте на сборку плату BMS.

Надеемся, мы помогли вам немного разобраться в теме, и вы сможете без проблем собрать свою систему акб, если потребуется.

Шаг 1: теория

Если вы помните начальные курсы физики, то  понимаете, что при параллельном подключении двух или более аккумуляторов их ёмкость увеличивается, а при последовательном – увеличивается их напряжение. В нашем случае нужно второе.

Ёмкость аккумулятора моего телефона составляет 1300 mAh. Было решено увеличить её вдвое и для этого мне потребовалось приобрести еще один аккумулятор такой же ёмкости 1300 mAh. Прочитав в интернете пару статей о литиевых аккумуляторах,  выяснил, что li-pol (литий-полимер, аккумулятор из телефона) и li-ion (литий-ион) имеют одинаковый алгоритм зарядки и отличаются всего лишь агрегатным состоянием электролита. Второй аккумулятор больше подходил, потому что он был тоньше и проще в использовании. Получается, нужен li-ion аккумулятор на 1300 mAh.

Очередная статья из «всемирной паутины» помогла разобраться в устройстве аккумулятора для телефона. 3 вывода на нём – это схема предохранения, которая при глубоком разряде аккумулятора «отрывает» его от нагрузки. Купленный аккумулятор имел подобную схему, но всего с двумя выводами (+ и -).

Как подключить второй аккумулятор к электросамокату

Схема подключения дополнительного аккумулятора зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих характеристик.

Любители электротранспорта как правило хотят увеличить емкость штатной батареи или подключить дополнительную.

В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ подключения позволяет увеличить емкость питающего устройства вашего электротранспорта.

Параллельное соединение осуществляется путем подключения однополюсных выводов источников тока: плюсовой и минусовой выводы подключаем к штатной батарее (плюс к плюсу и минус к минусу). Суммарная электрическая емкость подключенной таким способом батареи будет равна сумме электрических емкостей входящих в схему.

При условии, что на обоих аккумуляторах установлена BMS.

Заряд двух параллельно соединенных акб с bms

При параллельном подключении лучше всего использовать равнозаряженные акб. Расход емкости будет происходить относительно равномерно с двух аккумуляторов.

Можно подключить через переключатель тогда расход батареи будет происходить поочередно.

Суть платы BMS (Battery Management System) – система управления батареей. Так или иначе она обеспечивает корректную работу аккумуляторов в данном устройстве, начиная с простых плат защиты или балансировки, заканчивая сложными микроконтроллерными устройствами, подсчитывающими ток разряда и количество циклов заряда.

То, что продаётся повсеместно, условно можно разделить на четыре категории:

  • балансиры
  • защиты (по току, напряжению)
  • платы, обеспечивающие заряд (да, они тоже считаются устройствами BMS)
  • те или иные комбинации вышеперечисленных вариантов, вплоть до объединения всего в одно устройство

Чем функциональней и многопрофильней защита – тем больше ресурс работы вашего аккумулятора.

Если вам достался аккумулятор без платы BMS, этот набор ячеек необходимо подключать к штатной батареи, чтобы за зарядом-разрядом следила штатная бмс.

Решили подключить дополнительный аккумулятор, выбирайте в разделе запчасти.

Наш сервисный центр предлагает профессиональный ремонт электросамокатов Kugoo, услуги по гарантийному и послегарантийному обслуживанию электротранспорта

Контакты нашей мастерской

Адрес: Москва, ул. Кировоградская, дом 9 корпус 1

Телефон:

Электронная почта:

Время работы мастерской: ПН — ПТ: с 10:00 до 20:00, СУБ: с 10:00 до 20:00, ВСК: с 10:00 до 20:00.

Оцените статью:
Оставить комментарий
Adblock
detector