Производство, передача и использование электрической энергии (презентация)

Способы электропередачи на дальние расстояния

Осуществление передачи электрической энергии можно сделать при помощи прямой передачи и преобразования электричества в другую энергию. В первом случае электричество идет по проводниковым элементам, а именно проводу или токопроводящей среде. В воздушной или кабельной линии используется данный метод электропередачи.

Обратите внимание! Благодаря преобразованию энергии в другую энергию открывается беспроводной способ снабжения потребителей. Из-за этого пользователи могут отказаться от электрической передачи и избавиться от монтажа и обслуживания

Стоит также указать, что передается электроэнергия благодаря индуктивной, резонансной индуктивной, емкостной, магнитодинамической связи, свч-излучению и оптическому излучению. При этом переносчиком всех этих способов является магнитное и электрическое поле, а также видимый свет с инфракрасным излучением и ультрафиолетовым излучением.

Способы электропередачи

Схемы

На данный момент есть одноцепная, двухцепная или многоцепная схема электропередач. Одна из таких представлена на схеме ниже и может быть использована для обеспечения электроэнергией целого поселка или производственной станции. Другие схемы можно отыскать в гостах.

Схема электропередачи

В целом, электропередача энергии, благодаря которой функционирует вся домашняя и производственная сеть вместе с оборудованием, происходит катушками, лазером и микроволнами. Также есть способы перенаправления потока на дальние расстояния. Зависит это от длины проводов, стрелы их провеса, расстояния от земли и других факторов.

Микроволны

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат

Зайдите на кухню и обратите внимание на свою микроволновку

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

Американский

Советский

В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

надежность

большая мощность

стойкость к перегрузкам

отсутствие переизлучения

невысокая цена изготовления

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях. 

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

на земле и в космосе

с поверхности земли на космический корабль или спутник

и наоборот, со спутника в космосе обратно на землю

Резонансные системы передачи

В СССР вместо SWER разрабатывали систему однопроводной системы передачи электроэнергии, основанной на принципе, открытом Николой Тесла. Работы по изучению работы ЛЭП в резонансном режиме были начаты в 1956 году в Сибирском НИИ энергетики (Сиб-НИИЭ) под руководством профессора В.К.Щербакова. В 80-е годы разработки по однопроводным линиям велись во Всесоюзном энергетическом институте (ВИЭ), позже это проблематикой занялись во Всероссийском НИИ электрификации сельского хозяйства (ВИЭСХ).

По сравнению со SWER, однопроводная резонансная линия более безопасна. При обрыве или же замыкании на землю провода меняется частота собственного резонанса линии. Это может быть обнаружено автоматикой на передающей стороне и подача электроэнергии будет сразу же отключена. Не говоря уж о том, что из-за изменения частоты резонанса напряжение в линии само по себе резко уменьшается. По этой же причине однопроводные резонансные линии надежно защищены от несанкционированного отбора электроэнергии. Данные о воздействии электрической коррозии от резонансных однопроводных систем на городскую инфраструктуру пока отсутствуют из-за малочисленности опытов.

Современная реализация идей Теслы предусматривает подстройку рабочей частоты системы и резонансной частоты трансформаторов с помощью компьютеров. Это приводит к значительному увеличению стоимости оборудования, что является недостатком системы. Поэтому применять однопроводные резонансные системы стоит главным образом как часть интеллектуальных систем электропитания с распределенным управлением, что позволяет использовать одно и то же компьютерное оборудование как для управления сетью, так и для подстройки частоты.

В резонансных однопроводных линиях передача энергии осуществляется на частотах от 1,5 кГц до 20 кГц. Это значительно выше, чем частота переменного тока в обычных линиях (50 Гц), к тому же, частота может меняться в широких пределах. При передаче больших мощностей по воздушным ЛЭП возникает проблема электромагнитной совместимости с электронными устройствами, находящимися поблизости, не решенная до сих пор.

Тем не менее, однопроводные резонансные системы уже сейчас могут найти применение для питания устройств с небольшой потребляемой мощностью (порядка единиц ватт). Речь идет о камерах видеонаблюдения и публичных точках доступа Wi-Fi, установленных в парках, а также других открытых пространствах. Эти устройства соединяются друг с другом самонесущим волоконно-оптическим кабелем, имеющим внутри прочный стальной трос. По этому тросу можно организовать однопроводную передачу электроэнергии.

В 2013 году в подмосковном городе Дубна была введена в эксплуатацию непрерывная зона доступа Wi-Fi вдоль набережной Волги длиной 1250 м. Точки доступа Wi-Fi питаются в ней через стальной трос оптического кабеля описанным выше способом. Оборудование создано ООО «Мезон» — резидентом технопарка при местном университете. По оценкам разработчиков, их система позволяет на 40% сократить капитальные затраты на строительство линии электропередачи.

Дальнейшее развитие однопроводных резонансных систем будет, очевидно, связано с внедрением технологии для создания подземных кабельных линий. При этом автоматически решается проблема электромагнитной совместимости, да и частота собственного резонанса линии, находящейся под землей, более стабильна, что упрощает систему регулировки частоты.

В ВИЭСХ уже создана опытная подземная однопроводная линия длиной 1,2 км, способная передавать электроэнергию мощностью до 20 кВт. Есть и разработки, позволяющие передавать до 100 кВт. Основная проблема, которую предстоит решить для широкого распространения подземных однопроводных линий — создание недорогой изоляции с минимальными потерями электромагнитных волн, распространяющихся вдоль провода. Возможным выходом станут так называемые газоизолированные ЛЭП, в которых изоляцией является специальный газ, закачанный под давлением в оболочку провода. Тем не менее, о полной замене традиционных систем передачи электроэнергии на однопроводные резонансные в обозримом будущем говорить не приходится. Но для специализированных применений, как, например, упоминавшаяся система электропитания точек доступа Wi-Fi, однопроводные системы уже сейчас могут использоваться, давая значительную экономию.

Алексей ВАСИЛЬЕВСтатья опубликована в журнале «Электротехнический рынок» №4 (64) июль-август 2015

Передача через катушки

Самым легко реализуемым способом передачи электроэнергии является использовать катушку индуктивности. Принцип подключения при этом простой. Ставится несколько катушек рядом друг с другом. На одну подается напряжение, а другая является приемником. При регулировании или изменении силы тока, вторая катушка также автоматическим способом видоизменяется. По закону физику, при этом будет появляться сила, которая будет напрямую зависеть от того, как изменяется поток электрической энергии.

Минусов в подобной передачи энергии много. Они заключаются в маленькой мощности, небольшом расстоянии и малом коэффициенте полезного действия.

Данный способ не позволяет передать большой объем энергии и подключить мощностное электрооборудование. При попытке совершения этого, можно просто поплавить все электрообмотки.

Кроме того, данным методом нельзя передавать энергию на десятки с сотней метров. Он обладает ограниченным действием. Для физического понимания ситуации, нужно взять несколько и прикинуть местоположение и дальности их разводки, чтобы перестало появляться притяжение или отталкивание. Примерно так эффективны катушки.

Обратите внимание! Еще одной проблемой данного метода является низкий коэффициент полезного действия. Подобный способ не дает передачи большой энергии на соответствующее расстояние

Передача энергии через катушки

Физика

Производство электрической энергии

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.

Рис. 3.35

Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60—70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 — генератор; 2 — трансформатор; 3 — турбина; 4 — лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Рис. 3.36

На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т

д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные мап1ины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Герасименко А.А. Федин И.Т. Передача и распределение электрической энергии

Предисловие

Данное учебное пособие предназначается для студентов электроэнергетических и электротехнических специальностей вузов. В качестве основного оно может быть использовано студентами, которые специализируются по электроэнергетическим системам, электрическим сетям, электрическим станциям, системам электроснабжения, а как вспомогательное — студентами смежных инженерных специальностей, экономических и педагогических специальностей энергетического профиля. Книга может быть использована инженерами, магистрантами, аспирантами и научными работниками занимающимися эксплуатацией, проектированием, исследованием систем передачи и распределения электрической энергии. Кроме того, учебное пособие может быть полезно при переподготовке и повышении квалификации инженеров экономистов, педагогов энергетического профиля.

Подготовленное учебное пособие явилось результатом продолжительного сотрудничества кафедры «Электрические системы и сети» Красноярского государственного технического университета и кафедры «Электрические системы» Белорусского национального технического университета (г. Минск). При подготовке книги авторы использовали свой многолетний опыт постановки и преподавания дисциплины данного направления в вышеуказанных вузах, а также свои ранее опубликованные работы. Естественно, был использован ряд работ других авторов а также результатов, полученные в диссертациях аспирантов и магистрантов, выполненных под руководством авторов.

Материал пособия содержит теорию передачи и распределения электроэнергии, многочисленные примеры решения задач и обширный список контрольных вопросов для самопроверки. Данные вопросы могут быть также применены при подготовки системы тестов, используемых при диагностике компетенций студентов по всему материалу дисциплины. В приложениях приведены справочные материалы, необходимые для решения задач по всему содержанию книг. Список литературы содержит основные учебники и учебные пособия, изданные ранее no данному направлению справочники, монографические и периодические источники, которые могут быть использованы для углубленного изучения того или иного раздела. С этой мыслью в тексте сделаны соответствующие ссылки.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить «верхам» и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Оцените статью:
Оставить комментарий