Ограничитель перенапряжения (опн): применение в сетях, основные типы и советы по монтажу. обзор самых эффективных методов защиты!

Назначение

ОПН предназначены для защиты электроприборов и оборудования от воздействия высоковольтных импульсов напряжения. Благодаря простоте конструкции и надежности, они нашли широкое применение в области энергоснабжения. Данные устройства защиты пришли на смену устаревшим, весьма громоздким вентильным разрядникам. В отличие от предшественников, принцип действия ограничителя заключается не в использовании искровых промежутков. В качестве главного рабочего элемента в ОПН используются нелинейные резисторы, выполненные из материала, основу которого составляет окись цинка.

Симптомы острой почечной недостаточности

Ранние признаки острой почечной недостаточности часто минимальные и непродолжительные:

  • Циркуляторный коллапс, эпизод острой сердечной недостаточности при преренальной ОПН;
  • Почечная колика при постренальной острой почечной недостаточности;
  • Острый гастроэнтерит при отравлении солями тяжелых металлов;
  • Местные и инфекционные проявления при множественной травме.

Многие симптомы начальной стадии острой почечной недостаточности (отсутствие аппетита, слабость, сонливость, тошнота) неспецифичны. Поэтому врачи Юсуповской больницы для ранней диагностики ОПН применяют лабораторные методы: определение уровня креатинина, калия и мочевины в крови.

К признакам клинически развёрнутой острой почечной недостаточности относятся симптомы выпадения гомеостатической функции почек:

  • Острые нарушения кислотно-основного состояния и водно-электролитного обмена;
  • Нарастающая азотемия (повышение уровня азота в крови);
  • Поражение лёгких, органов пищеварения, центральной нервной системы (уремическая интоксикация);
  • Острые грибковые и бактериальные инфекции.

Олигурия с диурезом менее 500 мл обнаруживается у большинства пациентов с ОПН. У 3-10% больных развивается анурическая острая почечная недостаточность, при которой диурез менее 50 мл в сутки. К олигурии и особенно анурии могут быстро присоединиться симптомы внеклеточной (полостные и периферические отёки), затем внутриклеточной гипергидратации (отёк мозга, лёгких, острая левожелудочковая недостаточность).

Кардинальным признаком ОПН является азотемия – повышение концентрации азота в крови. Её выраженность отражает тяжесть острой почечной недостаточности. При ОПН азотемия нарастает быстро. При некатаболической форме ОПН ежесуточный прирост уровня мочевины крови составляет 10-20 мг%, а креатинин увеличивается на 0,5-1 мг%.

Гиперкатаболическая форма острой почечной недостаточности развивается у пациентов с острым сепсисом, ожоговой болезнью, множественной травмой с краш-синдромом, после хирургических операций на сердце и крупных сосудах. Она отличается высокими темпами ежесуточного прироста мочевины и креатинина крови, более выраженными нарушениями кислотно-основного состояния и обмена калия. У пациентов, страдающих неолигурической ОПН, высокая азотемия в большинстве случаев появляется при присоединении гиперкатаболизма.

При олигурической и анурической ОПН развивается гиперкалиемия – повышение содержания калия в сыворотке до уровня более 5,5 мэкв/л. Критическая гиперкалиемия может развиться в течение первых суток болезни и определить темп нарастания уремии. В Юсуповской больнице для выявления гиперкалиемии и контроля уровня калия проводят биохимический мониторинг и многократно регистрируют ЭКГ.

У большинства больных ОПН врачи обнаруживают метаболический ацидоз со снижением уровня бикарбонатов в сыворотке до 13 ммоль/л. При более выраженных нарушениях кислотно-основного состояния с большим дефицитом бикарбонатов и снижением кислотности крови усугубляются нарушения сердечного ритма, вызванные гиперкалиемией, присоединяются большое шумное дыхание Куссмауля и другие признаки поражения центральной нервной системы. Для острой почечной недостаточности характерно тяжёлое угнетение функции иммунной системы.

Вследствие присоединения острых бактериальных и грибковых инфекций у пациентов с ОПН может развиться острая пневмония, паротиты, стоматиты, инфекция мочевых путей. При тяжёлой гипергидратации возникает уремический отёк лёгких. Он проявляется острой дыхательной недостаточностью. На рентгенограмме определяются множественные облаковидные инфильтраты в обоих лёгких.

С ОПН ассоциируется респираторный дистресс-синдром. Он также проявляется острой дыхательной недостаточностью с прогрессирующим ухудшением легочного газообмена и диффузными изменениями в лёгких (интерстициальным отёком, множественными ателектазами) с признаками острой легочной гипертензии. В последующем присоединяется бактериальная пневмония.

Для ОПН характерно циклическое течение. Выделяют следующие стадии острой почечной недостаточности:

  • Кратковременную начальную;
  • Олигурическую или анурическую (2-3 недели);
  • Восстановительную полиурическую (5-10 дней).

Необратимое течение ОПН наблюдается при билатеральном кортикальном некрозе, выраженных воспалительных поражениях почечных сосудов (системных васкулитах, злокачественной гипертонической болезни).

Что такое УЗИП и для чего оно нужно?

Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройстваДля чего предназначеноГде применяется
I классДля защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II классОбеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III классДля защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Классификация устройств

Стандартом предусмотрена классификация устройств по следующим параметрам:

  • числу вводов;
  • по способу осуществления защитных функций;
  • по месту расположения;
  • по способу монтажа;
  • по набору защитных функций;
  • по степени защиты наружной оболочки;
  • по роду тока питания.

Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.

Читайте еще: что такое узо и зачем нужен автоматический выключатель тока?

По признаку количества вводов приборы защиты делятся на одновводные, то есть, имеющие один ввод и двухвводные. Защита может осуществляться различными способами, существуют устройства коммутирующего типа, приборы, осуществляющие ограничение напряжения, а также аппараты комбинированного типа. Место установки защиты зависит от вида защищаемого оборудования. Установка может осуществляться как наружно, так и внутри помещений. Способ установки аппаратов может быть стационарным либо переносным. Виды защит, содержащиеся в приборе, могут составлять комбинации из схем различных типов:

  • защиты теплового типа;
  • защиты, реагирующей на появление токов утечки;
  • защиты от сверхтока.

Степень защиты по IP должна соответствовать условиям эксплуатации. Приборы могут питаться переменным или постоянным током.

Технические характеристики

  1. Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
  2. Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
  3. Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
  4. Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
  5. Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
  6. Токовая пропускная способность. Величина эквивалентная классу разряда линии.
  7. Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.

Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.

На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.

Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:

https://youtube.com/watch?v=2ZZwQRD6q4I

Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.

Будет интересно прочитать:

  • Испытания ограничителей перенапряжения нелинейных
  • Для чего нужно реле напряжения
  • Как защититься от помех в электросети

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее — площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота — параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения — постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал — десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Оборудование Schneider Electric для защиты от перенапряжений

Наиболее эффективными средствами для обеспечения защиты от перенапряжений в квартирах и частных домах служат модульные аппараты, устанавливаемые в распределительные щиты. Также с целью частичной защиты могут использоваться сетевые фильтры.

Дифференциальные выключатели нагрузки (УЗО) предназначены в первую очередь для защиты людей от поражения электрическим током и предотвращения возгораний. Однако в линейке модульного оборудования Easy9, разработанного компанией Schneider Electric, также есть УЗО, совмещающие защиту от утечки тока и от превышения напряжения. Если в сети возникнет переходное напряжение промышленной частоты, к примеру, из-за обрыва нейтрального провода в подъезде многоквартирного дома, питание будет отключено. Такое устройство позволит защитить и проводку, и оборудование, и человеческую жизнь.

Устройства защиты от импульсных перенапряжений (УЗИП) помогают предотвратить последствия от непрямых ударов молний и аварийных скачков напряжения, губительных для дорогостоящей электроники; они компенсируют сильные броски напряжения, с которыми УЗО справиться не в состоянии. Как правило, электроника может выдержать перенапряжения до 1300-1500 В, в том время, как скачки напряжения при ударе молнии могут достигать 10 000 В. Задача УЗИП — сгладить импульсные перенапряжения до приемлемого уровня в 1000-1300 В.

Наиболее распространенный вариант УЗИП — это сетевые фильтры (удлинители с кнопкой), однако УЗИП в модульном исполнении (к примеру, Easy9 от Schneider Electric) обеспечивает значительно более надежную и качественную защиту от перенапряжений. К тому же, размещение аппарата в распределительном щитке на входе в квартиру позволяет защитить не только компьютер, но и кухонные приборы, климатическое оборудование, охранную сигнализацию, мультимедийные системы, поставленные на зарядку смартфоны и т.д. К сожалению, пока модульными аппаратами УЗИП оснащено не более 1 % российских домохозяйств.

Смотреть видеосюжет об основных преимуществах автоматов Easy9, Домовой и Acti 9

При выборе устройств защиты от импульсных перенапряжений важно учитывать наличие молниеотвода, организацию системы заземления, информацию о токах короткого замыкания (КЗ). Наличие УЗИП обеспечивает полную защиту системы электроснабжения квартиры или частного дома и гарантирует сохранность всех видов дорогостоящей бытовой техники и электроники

Наличие УЗИП обеспечивает полную защиту системы электроснабжения квартиры или частного дома и гарантирует сохранность всех видов дорогостоящей бытовой техники и электроники.

Ограничители перенапряжений Acti 9 предназначены в первую очередь для промышленных и административных зданий. Однако и в этой серии есть оборудование, которое при необходимости можно применять в жилых помещениях для надежной защиты от атмосферных перенапряжений. Это ограничители перенапряжения типа 2 со встроенным разъединителем — iQuick-PF, iQuick-PRD и модульные ограничители перенапряжений типа 2 — iPF & iPRD. В оборудовании Acti 9 предусмотрена сертифицированная координация срабатывания с автоматическими выключателями, кроме того, аппараты очень легко монтировать на объекте, а их состояние можно отслеживать удаленно с помощью системы мониторинга. Для телекоммуникационных сетей могут использоваться устройства защиты iPRC и iPRI.

Помимо этого в продуктовом портфеле Schneider Electric есть бытовые устройства защиты от всплесков напряжения APC SurgeArrest Performance. Сетевые фильтры этой серии предназначены для обеспечения минимально необходимой защиты компьютеров, бытовых электронных приборов и телефонных линий от импульсных помех.

При выборе решения для защиты от перенапряжения, важно учитывать стоимость защищаемого оборудования и последствия его выхода из строя. А также риски возникновения перенапряжений, которые напрямую связаны с состоянием сети и грозовой активностью в конкретной местности

Продумывая защиту электрооборудования, важно не забывать и о телекоммуникационных сетях, которые также могут пострадать от перенапряжений.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Принцип работы

Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.

Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.

Как подключить УЗИПы в домашних условиях

Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН  1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.

Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.

На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.

В схеме:

  • фаза — обозначена черным проводом;
  • нулевой — обозначен синим проводом;
  • зеленый — защитный заземляющий провод.

На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.

В схеме:

  • черный провод — первая из трех фаз;
  • красный провод — вторая из трех фаз;
  • коричневый — третья фаза;
  • синий — нулевой заземляющий провод;
  • зеленый — защитный провод заземления.

Разрядники

Принцип работы разрядников основан на способности высокого напряжения пробивать воздушный промежуток. Напряжение пробоя промежутка зависит главным образом от величины воздушного зазора.

Воздушный разрядник

Конструкция воздушного разрядника очень проста. Величина воздушного зазора между фазным и заземляющим проводом выбирается таким образом, что он гарантированно не пробивается при рабочем напряжении, но в случае кратного увеличения этого значения происходит пробой. При этом образуется электрическая цепь через дуговой разряд между фазой и защитным заземлением. Импульс тока, уходящий в заземляющее устройство, снимает перенапряжение и защищает силовые цепи от повреждения.

Вентильный разрядник

Усовершенствованной моделью воздушного разрядника является разрядник вентильного типа. Конструкция вентильного разрядника включает в себя несколько компонентов:

  • искровой промежуток, разделённый на несколько воздушных зазоров;
  • резистора.

Рабочий резистор представляет собой набор последовательно соединённых между собой дисков, изготовленных из вилита или тирита. Свойства этих материалов таковы, что вольт-амперная характеристика рабочего сопротивления является нелинейной. Это свойство позволяет пропускать большие импульсные токи перенапряжений при малом падении напряжения на самом элементе. Благодаря нелинейности характеристики разрядник получил название вентильный. Срабатывание вентильных разрядников происходит практически бесшумно, кроме этого, не наблюдается такое обильное выделение газа и пламени как в случае с воздушным разрядником.

Оцените статью:
Оставить комментарий
Adblock
detector