Принцип действия генератора постоянного напряжения

Плохой контакт между щетками и контактными кольцами ротора

Плохой контакт между щетками и контактными кольцами ротора возникает при загрязнении и замас­ливании контактных колец, большом износе щеток, уменьшении давления пружин на щетки и зависании щеток в щеткодержателях. При таких дефектах повышается сопротивление в цепи возбуждения (или даже прерывается цепь возбуждения), что вызывает снижение силы тока возбуждения, уменьшается мощность генератора.

Для устранения неисправности снимают щеткодержатель и проверяют его состояние. При необ­ходимости протирают щеткодержатель и щетки тряп­кой, смоченной бензином. Щетки должны свободно пе­ремещаться в щеткодержателях. При износе щеток до высоты 8 мм их заменяют с последующей проверкой давления пружины на каждую шетку в отдельности.

Загрязненные контактные кольца ротора протирают тряпкой, смоченной бензином. Окисленную рабочую поверхность колец зачищают стеклянной шкуркой.

Генераторы шунтового типа параллельного возбуждения

Главное условие самовозбуждения заключается в появлении тока на полюсах и ярме генератора при использовании остаточного Φ (магнитного потока).

Вследствие данного явления, якорь совершает вращательное действие и приводит к появлению ЭДС, вызывающей Iвозб, способствует прекращению действия Ф. Возбуждение такого типа требует выполнение условий присутствия согласного действия остаточного Ф и потока приращения – это служит вторым условием самовозбуждения.

Падение напряжения характеризуется 3 главными условиями, это:

  1. Повышение Iя повышает IаRа, и снижает U.
  2. Появление реакции якоря приводит к понижению величин ЭДС и U.
  3. Понижение значения U приводит у снижению Iа и ЭДС.

Основное про эффект возбуждения

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Читать дальше»

Как известно, вольтаж, формируемый геном на различных оборотах двигателя, регулируется посредством обмоток возбуждения

Ток поддерживается на постоянном вольтаже – 13,8-14,2 V

Как известно, вольтаж, формируемый геном на различных оборотах двигателя, регулируется посредством обмоток возбуждения. Ток поддерживается на постоянном вольтаже – 13,8-14,2 V.

Чтобы обеспечивать автомобильную систему (многочисленные потребители) током, предусмотрен регулятор или РН. Он бывает на отечественных автомобилях и некоторых иномарках, как правило, встроен внутрь генератора. В обиходе такой регулятор называется шоколадкой, таблеткой и т.д.

Ген связан с плюсовым зажимом АКБ через вывод «30». Его также называют плюсом, «В» или «ВАТ». Что касается отрицательного вывода, то он обозначается, как «31» или минус. Также в обиходе встречаются другие его обозначения: «D», «В-» и т.д. Клемма таблетки, используемая для подачи питания от автомобильной сети при включенном зажигании – вывод «15» или «S». Наконец, вывод, рассчитанный для подавания тока на поверочную лампу зарядки, обозначается, как «61» или «D+».

Регулятор напряжения или шоколадка

Если прекращается подзарядка АКБ, то это в большинстве случаев свидетельствует о порче шоколадки. Однако здесь не стоит отчаиваться, ведь достаточно будет подать напряжение на обмотки, т.е, возбудить генератор, чтобы доехать до магазина или ближайшего СТО.

Итак, чтобы доехать до нужного места, не подвергая АКБ глубокому разряду, надо снять шоколадку и возбудить ген.

Генератор ВАЗ 2107 и причины отсутствия зарядки

Для запуска двигателя и правильной работы системы зажигания и прочих электрических схем ВАЗ 2107 необходимо наличие напряжения постоянного тока в бортовой сети. Когда двигатель не заведен, должную величину напряжения поддерживает аккумулятор. После того как мотор запустится, генератор автомобиля обеспечивает заряд аккумулятора и поддержание напряжения бортовой сети на уроне 13,6-14,2 В. Независимо от оборотов двигателя выходное напряжение на генераторе остается постоянным. За это отвечает реле-регулятор, которое меняет напряжение цепи возбуждения генератора. Если напряжение растет выше допустимого уровня, ток обмотки уменьшается, снижая выходное напряжение. И наоборот.

Если пропала зарядка ВАЗ 2107, причины могут быть следующими:

  • неисправность реле-регулятора;
  • обрыв или плохой контакт в сети возбуждения или выходного напряжения генератора;
  • обрыв ремня генератора.

Восстановления нормальной работы генератора следует начать с определение причины отсутствия заряда АКБ.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Система — возбуждение — генератор

Системы возбуждения генератора и автоматического регулирования возбуждения, система его защиты от недопустимого увеличения тока и недопустимого снижения напряжения должны обеспечивать возможность эксплуатации генератора в нормальных и аномальных режимах.

Принципиальная схема машинного возбуждения синхронного генератора.

Система возбуждения генератора должна быть выполнена с максимальной надежностью. Недопустимо использовать возбудитель для каких-либо иных целей, кроме возбуждения.

Турбогенератор мощностью 100 тыс. кет, 3000 об / мин с водородным охлаждением.

Система возбуждения генератора должна быть выполнена с максимальной надежностью. Недопустимо использование возбудителя для каких-либо иных целей, кроме возбуждения.

Системы возбуждения генераторов относятся к числу наиболее ответственных элементов генератора. Несмотря на то что относительная мощность возбудителей невелика и составляет всего лишь 0 2 — 0 6 % мощности генераторов, а напряжение возбуждения 80 — 630 В, их работа существенно влияет на устойчивость работы генераторов и электродвигателей с.

Схемы электромашинного возбуждения с генераторами ( возбудителями постоянного тока.| Схема электромашинного возбуждения с высокочастотным. генератором и полупроводниковыми выпрямителями.

Система возбуждения генератора должна обеспечить не менее чем двукратную форсировку возбуждения и скорость нарастания напряжения не менее двух единиц возбуждения в секунду ( ед.

Системы возбуждения генератора и автоматического регулирования возбуждения, система его защиты от недопустимого увеличения тока и недопустимого снижения напряжения должны обеспечивать возможность эксплуатации генератора в нормальных и аномальных режимах.

Системы возбуждения генераторов различают по элементам, применяемым в качестве возбудителей ( электромашинные усилители, магнитные усилители, тиратроны, ртутные выпрямители, полупроводники), а также по количеству каскадов возбуждения: простое — когда основное управление производится в обмотках возбуждения возбудителя; квадратичное — когда имеется управляемый возбудитель для основного возбудителя; кубичное — когда имеются три каскада возбуждения.

Система возбуждения генератора состоит из трех трансформаторов возбуждения, обеспечивающих регулируемый выходной ток, сила которого зависит от напряжения на нагрузке, протекающего через нагрузку тока и коэффициента мощности.

Система возбуждения генератора переменного тока.

Система возбуждения генератора переменного тока ( рис. 9.20) является замкнутой системой, в которой источником питания является сам генератор переменного тока. Энергия возбуждения генератора обеспечивается магнитным потоком в воздушном зазоре, создаваемым протекающим в обмотках генератора током. Обмотки возбуждения генератора подключены к трехфазному источнику напряжения с регулируемым выходным током. Когда генератор работает без нагрузки, мощность, расходуемая на питание обмоток возбуждения, незначительна. Если к генератору подключена нагрузка, ток питания обмоток возбуждения увеличивается. Такая система является саморегулирующейся и обладает очень хорошими характеристиками.

В систему возбуждения генератора ( синхронного компенсатора) входят: возбудитель ( генератор постоянного тока, генератор переменного тока или трансформатор с преобразователем), автоматический регулятор возбуждения, коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений.

В систему возбуждения генератора ( синхронного компенсатора) входят: возбудитель ( генератор постоянного тока, генератор переменного тока или трансформатор с преобразователем), автоматический регулятор возбуждения, коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений.

Каким компаниям доверять?

Выпуском электрических генераторов занимаются не только известные компании, но и те, что появились совсем недавно. В имеющемся ассортименте легко запутаться без некоторой подготовки.

Стационарная установка

Отечественному покупателю хорошо известны следующие несколько названий:

  • «Вепрь». Пользуется наибольшим спросом среди российских компаний, занимающихся этим направлением. Мощность находится в диапазоне от 2 до 230 кВт. Генераторы подходят как для бытового, так и для промышленного применения. WAY — модели, подходящие для эксплуатации в домашних условиях.
  • SDMO. Ещё один производитель, модели которого встречаются в большом количестве. Агрегаты и в этом случае с двигателями, работающими на 1 либо на 3 фазах. Мощность, внешнее исполнение — главное отличие между разными моделями. Корпус с шумопоглощением отлично подходит тем, кто использует именно бытовые разновидности генераторов. Воздушное охлаждение, мощность до 10 кВа — характеристики отдельного класса устройств. Они часто снабжаются дополнительными выходами для переменного либо постоянного тока. Электростартер дополняет стационарные разновидности моделей. Они устанавливаются на раме или внутри контейнеров с функцией шумоизоляции.
  • Geko. Производитель с широкой линейкой продукции для любых условий. Создаёт не только бытовые модели, но и варианты с более узкой специализацией. Внутри моделей устанавливают одно- или трёхфазный двигатель в зависимости от того, какие цели преследует потребитель. Запуск — ручной либо его заменяет электростартер. У некоторых моделей есть кожухи, поглощающие шумы. Встроенная панель автоматического запуска тоже становится неплохим дополнением к стандартным электростанциям.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щелкодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигание идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

КПД

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0)

При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

КПД

ЭДС

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Реакция ротора

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Переменный ток — AC

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

Смена полюсов

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.

Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Вращение ротора

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.

Внешняя характеристика

Рисунок 4. Внешние характеристики генераторов параллельного (1) и независимого (2) возбуждения

Характерной особенностью внешней характеристики генератора параллельного возбуждения является то, что при некотором максимальном значении тока I = Iмакс. (точка а на рисунке 4) она делает петлю и приходит в точку б на оси абцисс, которая соответствует установившемуся току короткого замыкания. Ток Iк.уст. относительно мал и определяется остаточным потоком, так как в данном случае U = 0, и поэтому iв = 0. Такой ход характеристики объясняется следующим. При увеличении тока I напряжение U падает сначала медленно, а затем быстрее, так как с уменьшением U и iв падает поток Фδ, магнитная цепь становится менее насыщенной и малые уменьшения iв будут вызывать все большие уменьшения Фδ и U (смотрите рисунок 3). Точка а на рисунке 4 соответствует переходу кривой х. х .х. с нижней части колена на прямолинейный, ненасыщенный участок. При этом, начиная с точки а (рисунок 4), дальнейшее уменьшение сопротивления нагрузки Rнг., подключенной к зажимам машины не только не вызывает увеличения I, а наоборот, происходит уменьшение I, так как U падает быстрее Rнг..

Работа машины на ветви аб характеристики несколько неустойчива и имеется склонность самопроизвольного изменения I. Ток Iк.уст. в некоторых случаях может быть больше Iн.

Построение внешней характеристики генератора параллельного возбуждения с помощью х. х. х. и характеристического треугольника показано на рисунке 5, где 1 – кривая х. х. х.; 2 – характеристика цепи возбуждения Uв = Rв × iв при заданном Rв = const и 3 – построенная кривая внешней характеристики.

Перенеся все эти точки в левый квадрант диаграммы рисунка 5 и соединив их плавной кривой, получим искомую характеристику 3. С учетом нелинейной зависимости катета аб треугольника от I опытная зависимость U = f(I) имеет характер, показанный на рисунке 5 слева штриховой линией.

Рисунок 5. Построение внешней характеристики генератора параллельного возбуждения с помощью характеристики холостого хода и характеристического треугольника

Хотя установившийся ток короткого замыкания генератора параллельного возбуждения невелик, внезапное короткое замыкание на зажимах этого генератора практически столь же опасно, как и у генератора независимого возбуждения. Объясняется это тем, что вследствие большой индуктивности обмотки возбуждения и индуктирования вихревых токов в массивных частях магнитной цепи уменьшение магнитного потока полюсов происходит медленно. Поэтому быстро нарастающий ток якоря достигает значений Iк = (5 – 15)Iн.

Оцените статью:
Оставить комментарий