Изопроцессы, работа в термодинамике, первый закон термодинамики

Почему сайт nkt.ru не работает сегодня?

Причины по которым возникают проблемы с доступом на сайт nkt.ru могут быть как на стороне сервера, на котором располагается сайт, так и на стороне клиента, т.е. Вас. Так
же сайт может не открываться из за проблем на стороне Вашего Интернет провайдера. Однако хотим отметить, что чаще всего невозможность открыть сайт nkt.ru
связана либо с попаданием сайта в черный список РКН (РосКомНадзор), либо с ошибками на стороне сайта.

Последнее время причиной невозможности открыть сайт так же становятся различные блокировщики рекламы, установленные на Вашем ПК, а так же антивирусное программное обеспечение.

Обход блокировки сайта nkt.ruОткрыть сайт во фрейме

Операции с ГНКТ

Растепление скважины с АДПМ

Растепление — это процесс растапливания горячей нефтью или специальным раствором гидратной или парафинистой пробки, как в трубном так и в затрубном пространстве нефтяных и газовых скважин. Пробки образуются в скважинах оборудованных как УЭЦН, так и просто лифтом НКТ.

  • АДПМ устанавливается на расстояние не менее 25 метров от устья скважины. АЦ с нефтью не менее 15 метров от АДПМ с наветренной стороны. Подача нефти из АЦ на АДПМ производится через гофрированный шланг. Жесткая нагнетательная линия крепится к одному (из двух) кранов высокого давления на входе в ГНКТ.
  • Оператор ДНГ снимает штуцер из штуцерной камеры ФА. После опрессовки всего оборудования, произвести прокачку ГНКТ нефтью с одновременной проверкой прохода жидкости в коллектор к АГЗУ. Спуск ГНКТ в скважину производится со скоростью не более 15 м/мин, с одновременной циркуляцией нефтью. Температура нагрева нефти не должна превышать 90ºС. Для корректировки веса ГНКТ, через каждые 300 метров производится подъем ГНКТ на 15 метров с занесением результата в отчет.
  • После определения глубины гидратно-парафиновой пробки, растепление скважины производить со скоростью не более 1м/мин для наибольшего прогрева затрубного пространства. Растепление производить с подъемом ГНКТ на 2-3 метра через каждые 10 метров промывки.
  • При получении положительного результата по растеплению НКТ, необходимо проверить циркуляцию по «большому» затрубному пространству путем прокачки скважины прямой промывкой нефтью. При отрицательном результате, допустить ГНКТ на 100 метров ниже последней пробки в НКТ и произвести отогрев затрубного пространства путем циркуляции горячей нефтью по «малому» затрубу. При достижении положительного результата – дальнейшие работы производить согласно плана работ.

Растепление скважины горячим раствором СаСl2

  • Технологическая емкость устанавливают на расстояние не менее 20 м от устья скважины. Цементировочный агрегат устанавливается на расстояние не менее 15 метров от технологической емкости, с наветренной стороны. ППУ устанавливается на расстояние не менее 25 метров от технологической емкости, с наветренной стороны.
  • Технологическая емкость должна иметь объем 6-8 м3 в обогреваемом исполнении. Емкость оборудуется: заземляющим устройством; «змеевиком», для циркуляции пара и нагрева раствора СаСl2; задвижкой, для подачи жидкости на ЦА-320; БРС, для соединения жесткой линией ППУ со «змеевиком»; жестко закрепленным уголком, для соединения с линией возврата жидкости из скважины.
  • От тройника (под превентором), обратная жесткая линия соединяется с БРС на технологической емкости и якорится не менее чем 2-мя якорями на одно НКТ 73мм, длиной 1,5м.На обратной линии устанавливается дополнительный кран высокого давления и блок дросселирования, для уменьшения или увеличения объема возврата жидкости из скважины.
  • Скорость спуска, температура раствора и дальнейшие действия аналогичны действиям, производимым при растеплении скважин с помощью АДПМ.

Освоение после МГРП

После проведенного многостадийного ГРП в скважине все порты (интервалы перфорации), кроме последнего, самого верхнего, перекрыты шарами металлического или керамического исполнения. Поэтому для освоения такой скважины необходимо отфрезеровать все фрак-порты, чтобы появилась связь между скважиной и продуктивным пластом. Главной задачей для ГНКТ в данном случае становится разбуривание шаров и седел для посадки шаров, активирующих порты на необходимой глубине, а также разбуривание обратных клапанов. Забой нормализовывают до башмака хвостовика.

Зачастую оставшиеся шары или их неразрушенные фрезом части мешают произвести полноценную нормализацию скважины. Поэтому когда пластовое давление достаточно для фонтанирования скважины, её сначала запускают на факельный амбар для выноса максимального количества шаров и только затем монтируют колтюбинговую установку для разбуривания фрак-портов. Порты необходимо разбуривать, так как они сужают внутренний диаметр хвостовика, т.е. штуцируют скважину под землей.

Соответствие физической величины в системе СИ

Основные величины

Величина Символ Единица СИ Описание
Длина l метр (м) Протяжённость объекта в одном измерении.
Вес m килограмм (кг) Величина, определяющая инерционные и гравитационные свойства тел.
Время t секунда (с) Продолжительность события.
Сила электрического тока I ампер (А) Протекающий в единицу времени заряд.

Термодинамическая

температура

T кельвин (К) Средняя кинетическая энергия частиц объекта.
Сила света

Iv

кандела (кд) Количество световой энергии, излучаемой в заданном направлении в единицу времени.
Количество вещества ν моль (моль) Количество частиц, отнесенное к количеству атомов в 0,012 кг12C

Производные величины

Величина Символ Единица СИ Описание
Площадь S м2 Протяженность объекта в двух измерениях.
Объём V м3 Протяжённость объекта в трёх измерениях.
Скорость v м/с Быстрота изменения координат тела.
Ускорение a м/с² Быстрота изменения скорости объекта.
Импульс p кг·м/с Произведение массы и скорости тела.
Сила

F

кг·м/с2 (ньютон, Н) Действующая на объект внешняя причина ускорения.
Механическая работа A кг·м2/с2 (джоуль, Дж) Скалярное произведение силы и перемещения.
Энергия E кг·м2/с2 (джоуль, Дж) Способность тела или системы совершать работу.
Мощность P кг·м2/с3 (ватт, Вт) Скорость изменения энергии.
Давление p кг/(м·с2) (паскаль, Па) Сила, приходящаяся на единицу площади.
Плотность ρ кг/м3 Масса на единицу объёма.
Поверхностная плотность ρA кг/м2 Масса на единицу площади.
Линейная плотность ρl кг/м Масса на единицу длины.
Количество теплоты Q кг·м2/с2 (джоуль, Дж) Энергия, передаваемая от одного тела к другому немеханическим путём
Электрический заряд q А·с (кулон, Кл)  
Напряжение U м2·кг/(с3·А) (вольт, В) Изменение потенциальной энергии, приходящееся на единицу заряда.
Электрическое сопротивление R м2·кг/(с3·А2) (ом, Ом) сопротивление объекта прохождению электрического тока
Магнитный поток Φ кг/(с2·А) (вебер, Вб) Величина, учитывающая интенсивность магнитного поля и занимаемую им область.
Частота ν с−1 (герц, Гц) Число повторений события за единицу времени.
Угол α радиан (рад) Величина изменения направления.
Угловая скорость ω с−1 (радиан в секунду) Скорость изменения угла.
Угловое ускорение ε с−2 (радиан на секунду в квадрате) Быстрота изменения угловой скорости
Момент инерции I кг·м2 Мера инертности объекта при вращении.
Момент импульса L кг·м2/c Мера вращения объекта.
Момент силы M кг·м2/с2 Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы.
Телесный угол Ω стерадиан (ср)  

Смотри также:

  • Справочные материалы по физике
  • Закон Ома
  • Первый закон Ньютона
  • Второй закон Ньютона
  • Третий закон Ньютона
  • Формулы кинематики
  • Формулы МКТ

Выпуск и маркировка труб НКТ

Насосно-компрессорные трубы (НКТ) представляют собой основной несущий элемент трубопроводов в разных сферах промышленности. В силу своего назначения и повышенных требований к эксплуатационным характеристикам, эти изделия должны соответствовать необходимым стандартам безопасности и иметь соответствующую маркировку.

Для обеспечения прочности продукции её вместе с соединительными муфтами изготавливают из прочной стали марок Д, Е, К, Л, М. Такие марки стали труб НКТ стоят дороже менее качественных аналогов, однако их использование помогает обеспечить необходимую для протяжённых и работающих в разных климатических условиях трубопроводов.

Выпуск таких труб в России осуществляется в соответствии с ГОСТом 633-80, предусматривающим изготовление следующих видов насосно-компрессорных труб:

  1. Стандартные НКТ, выпускаемые с муфтами для соединения.
  2. НКМ – марка продукции для создания участков трубопровода с повышенной герметичностью.
  3. НКТ-В – трубы с вынесенной (высаженной) наружу резьбой.
  4. НКБ – вид насосно-компрессорных труб без соединительных муфт.

Допускается производство согласно ТУ (техническим условиям), со следующими характеристиками труб НКТ:

  1. Особая стойкость к низким температурам, позволяющая использовать изделия в регионах Крайнего Севера (ТУ 14-3-1282-84 и ТУ 14-3-1588-88).
  2. Повышенная устойчивость к воздействию вызывающих коррозию сред с повышенным содержанием сероводорода (H2S) и кислотных испарений различной природы (ТУ 14-161-150-94 и ТУ 14-161-173-97).
  3. Улучшенная пластичность – такая продукция оснащена одним или несколькими соединительными элементами из пластика (ТУ 14-3-1722-91).

Что касается маркировки изделий, являющейся непременным условием выпуска НКТ, по правилам она, в виде клейма, должна быть расположена около торца изделия, на месте соединительной муфты.

Характерно для труб НКТ, что такое клеймо содержит сведения:

  1. О дате изготовления продукции (год и месяц).
  2. О толщине стенки и диаметре трубы НКТ (оба параметра представляются в миллиметрах).
  3. О марке стали, из которой произведено изделие (обозначается одной из указанных выше букв).
  4. Торговая марка предприятия-изготовителя.

Особенности эксплуатации и хранения

Рассмотрим некоторые особенности эксплуатации, хранения НКТ:

  • Использование смазки. Перед монтажом насосно-компрессорной колонны необходимо смазать конец НКТ защитной смазкой. Тип смазки зависит от характера скважины, типа обсадной трубы и категории металла, из которого сделан трубопровод. Смазку нужно наносить аккуратно в соответствии с правилами дозировки. Недостаток смазки или ее избыток негативно влияют на прочность конструкции, а также усложняют ее монтаж.
  • Сварочная защитная среда. Пайку следует проводить в защитной среде (аргон). Если защитный газ не использовать, то есть риск, что по время сварки будут повреждены металлические края детали. Это серьезно повышает вероятность коррозии, которая приведет к деформации и растрескиванию насосной колонны.
  • Удаление трубы из системы. В случае длительного простоя буровой платформы необходимо обязательно демонтировать НКТ. Ведь края трубы находятся в постоянном контакте с жидкой средой, что может привести к коррозии. После демонтажа необходимо промыть установку и смазать ее защитной смазкой. Проверить отсутствие повреждений, трещин, коррозийный участков.

Хранить трубы НКТ можно в любом сухом прохладном месте. Лучше упаковать их в специальные блоки из дерева, пластика и металла. Лучше всего хранить такие блоки на складе с хорошей вентиляцией. В соответствии с правилами ГОСТ на каждую запчасть должна быть нанесена отметка. Она должна содержать все важные данные о детали — маркировка, тип, краткие сведения о производителе, информация о рабочих, ответственных за ее изготовление в цеху. Блоки с трубами разрешается транспортировать любым удобным способом (с помощью грузовиков или поездов, самолетами, водным транспортом и так далее). В случае продажи по требованию покупателя необходимо выполнить контрольные процедуры, доказывающие, что детали находятся в надлежащем состоянии.

Применения в других областях[править]

Для разграничения температурных областей, в которых поведение вещества описывается квантовыми или классическими методами, служит температура Дебая:
$$~ Q_D = \hbar \omega_D /k,$$
где \( \hbar \) – постоянная Дирака, \( \omega_D =u \sqrt{6\pi^2 n } \) есть предельная частота упругих колебаний кристаллической решётки, \( u \) – скорость звука в твёрдом теле, \( n \) – концентрация атомов.

При температурах ниже \( Q_D \) требуется использовать квантовую статистику. Если же температуры выше \( Q_D \), то тепловая энергия (порядка kT) превышает характерную энергию колебаний решётки и система может быть описана формулами классической статистической механики.

Постоянная Больцмана входит в формулу Найквиста, определяющую средний квадрат шумового напряжения в электрической цепи с сопротивлением R в полосе частот \( \Delta \nu\) при температуре T. В классическом приближении формула для теплового шума имеет вид:
$$~ \bar {V^2} = 4 R k T \Delta \nu .$$

Принцип работы буровых вышек

Чтобы разобраться в назначении НКТ, нужно знать принцип работы буровых вышек. Для добычи воды, газа и нефти, которые расположены глубоко под землей, применяются буровые установки. Они отличаются друг от друга по множеству параметров — принцип работы, конструкция, эксплуатационные характеристики и другие. Обычно буровая установка состоит из трех элементов — надземная платформа, бурильная колонна и система питания. Также в состав установки могут входить дополнительные элементы — контролирующий пневмопривод, система охлаждения бура, датчики оповещения и так далее.

Технология бурения

  1. На подготовительном этапе геологи проводят разведку, намечают предполагаемое место бурения. Потом монтируется буровая платформа, выполняется тестовый запуск установки. Во время теста проверяются следующие параметры — качество сочленения деталей друг с другом, уровень вибрации, уровень нагрузки на электродвигатель.
  2. Если с платформой все хорошо, выполняется бурение скважины. Для бурения используется бурильная колонна, которая подключена к электрическому двигателю. На конце колонны имеется острый наконечник-долото, который разрушает твердые горные породы.
  3. Во время работы бурильная колонна вращается вдоль своей оси, что приводит к образованию скважины. Одновременно с этим выполняется подача отработанного грунта на поверхность. Современные установки оснащаются системой подачи защитных химикатов, которые минимизирует риск повреждения буровой колонны.
  4. После создания скважины необходимо выполнить ее фиксацию. Для решения этой задачи может использоваться две технологии. В первом случае в скважину устанавливается дополнительная труба, которая создает зазор между колонной и самой трубой. В этот зазор заливается мягкие смеси, которые быстро затвердевают. На практике этот метод применяется редко. Во втором случае в скважину монтируется обсадной трубопровод, который обладает толстыми стенками и может выдержать любые нагрузки.
  5. После укрепления скважины в обсадной трубопровод вводятся трубы для откачки полезных ископаемых или воды. В качестве такой трубы могут применяться НКТ. Перед их введением в скважину они скрепляются с помощью скважин-муфт, которые превращают отдельные трубы НКТ в единую компрессионную колонну. Для добычи полезных ископаемых запускается электрических двигатель, что приводит перекачиванию нефти или газа из скважины на поверхность. На буровой платформе полезные ископаемые упаковываются в емкости (бочки, резервуары, чаны).

Обратите внимание, что труба НКТ может использоваться и по другим сценариям. Простой пример: трубопровод можно настроить не на всасывание жидкостей, а на их распыление

Эта технология позволяет проводить нагнетание жидкостей, что может пригодиться в некоторых сферах человеческой деятельности. Примеры — ремонт скважин, геологическая разведка, локальное увеличение давления, создание дополнительных притоков к основной скважине.

Разновидность труб НКТ

Виды муфтовых насосно-компрессионных труб в разрезе: а — с конической резьбой треугольного профиля; б — с конической резьбой трапецеидального профиля и уплотнительным пояском; в — с конической резьбой треугольного профиля с повышенной пластичностью и хладостойкостью; г — с конической резьбой треугольного профиля с узлом уплотнения из полимерного материала

Гладкие насосно-компрессорные трубы способны обеспечить герметичность соединений при рабочем давлении до 50 МПа. Высокая герметичность соединения обеспечивается конической уплотнительной поверхностью, которая расположена за резьбой со стороны меньшего диаметра. Для соединения изделий используется трапецеидальная резьба.

Муфтовые НКТ – способны обеспечить герметичность соединения при рабочем давлении не более 50 МПа. Прочность соединения изделий составляет до 90% прочности его тела. Для соединения изделий также используется трапецеидальная резьба.

Насосно-компрессорные изделия, выполненные из алюминиевых сплавов, отличаются устойчивостью к воздействию коррозии сероводорода, что не позволяет использование ингибиторов коррозии. Благодаря небольшому весу, удельная прочность данных деталей в 2,5 раза выше, чем у изделий из стали. Это дает возможность сооружать колонну с большей (в 2,5 раза) длиной, в сравнении с колонной из деталей, изготовленных из стали.

Защитные покрытия применяются для обеспечения защиты от коррозии и предотвращения в них отложений парафина, гипса и солей. При применении данных труб уменьшается количество проведения текущих ремонтов скважин и увеличивается срок их эксплуатации. Внутренняя поверхность НКТ может быть покрыта жидким стеклом, эмалью, эпоксидной смолой или лаком. Самым распространенным способом покрытия внутренней поверхности изделия является остекловывание.

Роль в статистическом определении энтропии[править]

Основная статья: Термодинамическая энтропия

Вена, Zentralfriedhof, изображение Больцмана и формулы для энтропии на бюсте.

Энтропия S изолированной термодинамической системы в термодинамическом равновесии определяется через натуральный логарифм от числа различных микросостояний \(W\), соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией E):
$$~S=k \ln W.$$
Коэффициент пропорциональности \(k\) является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими и макроскопическими состояниями (через \(W\) и энтропию \(S\) соответственно),
выражает центральную идею статистической механики и является главным открытием Больцмана.

В классической термодинамике используется выражение Клаузиуса для энтропии:
$$~\Delta S = \int \frac{{\rm d}Q}{T}.$$

Таким образом, появление постоянной Больцмана k можно рассматривать как следствие связи между термодинамическим и статистическим определениями энтропии.

Энтропию можно выразить в единицах k , что даёт следующее:
$$~{S^{\,’} = \frac {S}{k}= \ln W} \; ; \; \; \; \Delta S^{\,’} = \int \frac{\mathrm{d}Q}{kT}.$$

В таких единицах энтропия точно соответствует информационной энтропии.

Характерная энергия kT равна количеству теплоты, необходимому для увеличения энтропии \(S^{‘}\) на один нат.

Разновидности изделий

Труба НКТ предназначена для скважин, по которым транспортируют жидкую и газообразную среду. Специфика внутренней среды, подаваемой под давлением – предъявление высоких требований к качеству подобных изделий.

НКТ труба определенного типа используется только для добычи битума и других тяжелых полужидких сред. Классификация А, Б, В и Г сводятся к типу резьбы, наличия полимерного узла уплотнения, усиленных показателей морозостойкости и наличия уплотнительных колец на резьбе.

НКТ трубы классифицируются по назначению, для каждого типа скважины выбирается определенный вид изделия

Но классифицируются насосно-компрессорные трубы по виду выкачиваемого из недр земли вещества:

  • нефтяные скважины;
  • газогонные;
  • водонагнетающие.

Для наибольшей устойчивости к коррозии изделия для насосно-компрессорных станций выпускаются из цветных металлов. Трубы на основе алюминия гарантируют стойкость к разрушительному действию сероводорода. Благодаря тому, что у трубы НКТ вес 1 метра намного меньше, оборудования станций будет весить меньше. Соответственно, общая нагрузка на поверхность, где расположен добывающий комплекс, будет иметь улучшенные показатели. Прочность же этих деталей на порядок выше обычных стальных изделий.

Небольшой вес трубы НКТ из лёгких сплавов – возможность сооружения более длинной колонны, примерно в 2,5 раза больше стальных деталей, имеющих один и тот же вес.

Оцените статью:
Оставить комментарий