Проверка тиристоров всех видов мультиметром

Тиристор в цепи переменного тока. Импульсно — фазовый метод

Share

Тиристор в цепи переменного тока. Импульсно — фазовый метод.

style=»display:inline-block;width:728px;height:90px»
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»1544101189″>

    Система управления тиристорами в цепях переменного и пульсирующего тока использует, синхронизированную с сетью, бесконечную серию управляющих импульсов и осуществляет сдвиг фазы фронтов управляющих импульсов относительно перехода напряжения сети через ноль.
Сформированный специальным устройством управляющий импульс подается на переход управляющий электрод – катод тиристора, которым и подключает электрическую сеть в нагрузку.
Разберем работу такой системы на примере регулятора температуры жала электрического паяльника мощностью до 100 ватт и напряжением 220 вольт. Схема этого устройства изображена на рис 1.

    Регулятор температуры электрического паяльника в сети переменного тока 220 вольт, состоит из диодного мостика на КЦ405А, тиристора КУ202Н, стабилитрона , узла формирования импульсов управления.
С помощью мостика переменное напряжение превращается в пульсирующее напряжение (Umax = 310 B) положительной полярности (точка Т1).

Узел формирования состоит :
— стабилитрон,  формирует за каждый полупериод трапецевидное напряжение (точка Т2);
— временная зарядно-разрядная цепочка R2, R3, C;
— аналог динистора Тр1, Тр2.

С резистора R4 снимается напряжение импульса для запуска тиристора (точка 4).

На графиках (рис 2) показан процесс формирования напряжений в точках Т1 – Т5  при изменении переменного резистора R2 от нуля до максимума.

Через резистор R1 пульсирующее напряжение сети поступает на стабилитрон КС510.
На стабилитроне формируется напряжение трапецевидной формы величиной 10 вольт (точка Т2). Оно определяет начало и конец участка регулирования.

    Параметры временной цепочки (R2, R3, C) подобраны так, чтобы за время одного полупериода конденсатор С успел зарядиться полностью.
С началом перехода напряжения сети Uc через ноль, с появлением трапецеидального напряжения, начинает расти напряжение на конденсаторе С.  При достижении напряжения на конденсаторе Uк = 10 вольт, пробивается аналог тиристора (Тр1, Тр2). Конденсатор С через аналог разряжается на резистор R4 и, включенный параллельно ему, переход Уэ – К тиристора (точка Т3) и включает тиристор.
Тиристор КУ202 пропускает основной ток нагрузи по цепи:  сеть – КЦ405 – спираль паяльника – анод – катод тиристора – КЦ405 – предохранитель — сеть.
Резисторы R5 — R6 служат для устойчивой работы устройства.

     Запуск управляющего узла автоматически синхронизирован с напряжением Uc сети.
Стабилитрон может быть Д814В,Г,Д. или КС510,КС210 на напряжение 9 – 12 вольт.
Переменный резистор  R2 – 47 — 56 Ком мощностью не менее 0,5 ватт.
Конденсатор С – 0,15 — 0,22 мкФ, не более.
Резистор R1 – желательно набрать из трех резисторов по 8,2 Ком, двух ваттных, чтобы не сильно нагревались.
Транзисторы Тр1, Тр2 – пары КТ814А, КТ815А; КТ503А, КТ502А и др.

    Если регулируемая мощность не превысит 100 ватт, можно использовать тиристор без радиатора. Если мощность нагрузки больше 100 ватт необходим радиатор площадью 10 – 20 см.кв.
    В данном импульсно – фазовом методе импульс запуска для тиристора вырабатывается в пределах всего полупериода.
Т.е. происходит регулировка мощности почти от ноля до 100%, при регулировании фазового угла от а=0 до а=180 градусов.
На графиках в точке №5 показаны формы напряжений на нагрузке при выборочных фазовых углах: а = 160, а = 116, а = 85, а = 18 градусов.
При значении а = 160 градусов, тиристор закрыт почти во все время прохождения полупериода сетевого напряжения (мощность в нагрузке очень мала).
При значении а = 18 градусов, тиристор открыт почти во все время действия полупериода (мощность в нагрузке равна почти 100%).
В графиках в точке  №4 во время открытия тиристора, вместе с появлением запускающего импульса, добавляется падение напряжения на открытом тиристоре (Uп на графике в точке №4).

Все показанные эпюры напряжений в точках Т1 — Т5, относительно точки Т6, можно посмотреть на осциллографе.

style=»display:inline-block;width:728px;height:90px»
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»1544101189″>

Share

Аналоги КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

  • ВТ138;
  • ВТ151.

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото — Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Фото — характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Фото — ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.

Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.

При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток, под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток, который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение, определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.

Характеристики

Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее

Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период

Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.

Фото — Cхема гирлянды бегущий огонь

Бывают:

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,
  • зарубежные TPS 08,
  • TYN 208.

Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Фото — Тиристор

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).

Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Характеристики

Постоянное отпирающее напряжение и отпирающий ток управляющего электрода

Отпирающее напряжение КУ201 (2У201) не более 6 В, КУ202 (2У202) не более 7 В. У этого параметра довольно большой технологический разброс. Как показывает опыт, обычно это напряжение в разы меньше, может быть 2 В или даже 1 В. При проектировании схем рассчитывать на какое-то определенное значение этого параметра не стоит.

Отпирающий ток КУ201 (2У201) не более 100 мА, КУ202 (2У202) не более 200 мА.

Напряжение в открытом состоянии при максимально допустимом токе

КУ201 (2У201) — 2.5 В, КУ202 (2У202) — 2 В. Этот параметр очень важен, так как позволяет оценить рассеиваемую мощность при заданном токе нагрузки в схемах коммутации, где переключения происходят достаточно редко и при небольшом токе (без учета потерь в переходных процессах).

[Рассеиваемая мощность, Вт] Напряжение в открытом состоянии, В] * [Действующее значение силы тока нагрузки, А]

Время включения и выключения

КУ201 (2У201) — включение 10 мкс, выключение 100 мкс, КУ202 (2У202) — включение 10 мкс, выключение 150 мкс.

Время включения не является критическим параметром. Время выключения влияет на то, на какой максимальной частоте тиристор может работать. Для стабильного запирания тиристора считается необходимым, чтобы время выключения (запирания) составляло 1% — 1.5% от длительности полупериода (для синусоидального сигнала или другого с плавными фронтами). Так что эти тиристоры можно применять только в сети 50 — 60 Гц.

Мы пробовали использовать их для коммутации силовых нагрузок при 400 Гц, и поняли, что делать этого не стоит. Во-первых, без специальных демпфирующих цепей, запираются они ненадежно. Во-вторых, высоки коммутационные потери и, соответственно, нагрев. В-третьих, применение демпфирующих цепей еще больше увеличивает потери.

Максимальная сила тока и мощность

Постоянный ток в открытом состоянии КУ201 (2У201) — 2 А, КУ202 (2У202) — 10 А.

Импульсный (

Импульсный (

Средняя рассеиваемая мощность (при условии надежного отвода тепла) КУ201 (2У201) — 4 Вт, КУ202 (2У202) — 20 Вт.

Рабочее напряжение

Описываемые тиристоры относятся к классу обратно-непроводящих. Однако, для некоторых буквенных индексов обратное напряжение не нормируется, то есть производитель не гарантирует их устойчивую работу при приложении обратного напряжения. Мы приведем прямое напряжение в закрытом состоянии для всех буквенных индексов и обратное только для тех, для которых оно приводится производителями. Если обратное напряжение не приведено, то оно не нормируется, и подавать напряжение обратной полярности на прибор не стоит.

Для прямого напряжения приводится минимальное значение, то есть производитель гарантирует, что при таком напряжении тиристор не откроется, но он не гарантирует, что при несколько большем напряжении он обязательно откроется. Экспериментируя с тринисторами 2У201Л, 2У202К, мы находили образцы, которые не открывались даже при 1300 В. Так что, проектируя схемы, не следует рассчитывать на то, что тиристор обязательно откроется при нужном Вам напряжении без подачи тока на управляющий электрод.

Тиристоры КУ201Л, 2У201Л, КУ201К, 2У201К, КУ202Л, 2У202Л, КУ202К, 2У202К хоть по справочнику и имеют максимальное напряжение 300 В, но отлично работают в схемах коммутации сетевого напряжения, где амплитудное значение напряжения может достигать 330 В.

Постоянное прямое напряжение в закрытом состоянии не менее: КУ201А (2У201А), КУ201Б (2У201Б), КУ202А, КУ202Б — 25 В, КУ201В (2У201В), КУ201Г (2У201Г), КУ202В, КУ202Г — 50 В, КУ201Д (2У201Д), КУ201Е (2У201Е), КУ202Д (2У202Д), КУ202Е (2У202Е)- 100 В, КУ201Ж (2У201Ж), КУ201И (2У201И), КУ202Ж (2У202Ж), КУ202И (2У202И)- 200 В, КУ201К (2У201К), КУ201Л (2У201Л), КУ202К (2У202К), КУ202Л (2У202Л)- 300 В, КУ202М (2У202М), КУ202Н (2У202Н)- 400 В.

Постоянное обратное напряжение: КУ201Б (2У201Б) — 25 В, КУ201Г (2У201Г) — 50 В, КУ201Е (2У201Е), КУ202Е (2У202Е)- 100 В, КУ201И (2У201И), КУ202И (2У202И)- 200 В, КУ201Л (2У201Л), КУ202Л (2У202Л)- 300 В, КУ202Н (2У202Н)- 400 В.

Что такое тиристор

Тиристор представляет собой одну из разновидностей полупроводниковых приборов, использующих в основе своей работы p-n – переходы. Это электронный ключ, при помощи которого можно регулировать мощную нагрузку с использованием слабых сигналов.

На рынке электротоваров полупроводниковые устройства представлены в достаточно широком ассортименте, классификация которых осуществляется с учетом метода управления и от проводимости:

  • Динистор (диодный радиоэлемент) – оснащен двумя выводами, а переключение в открытое положение происходит за счет импульсов напряжения с конкретной амплитудой;
  • Триодный прибор – не способен пропускать в обратном направлении, он функционирует за счет пульсации тока управления, а процесс выключения происходит или при подаче обратного напряжения, или отключением тока в открытом положении. Учитывая коммутационные параметры, устройства бывают и низкочастотными, и высокочастотными, и быстродействующими, и импульсными;
  • Запираемый тиристор – отключение производится за счет импульсов тока управления (относительно триодного прибора отключается быстрее);
  • Комбинированно-выключаемый радиоэлемент – отключается при подаче импульса тока управления при одновременном приложении обратного анодного напряжения;
  • Симистор-устройство с тремя электродами с пятислойной структурой, которое способно в открытом состоянии пропускать ток, и в прямом направлении, и в обратном;
  • Оптотиристор-радиоэлемент со встроенным светодиодом, за счет которого происходит управление от светового сигнала.

Полупроводниковые приборы данной категории активно используются в составе электронных ключей, выпрямителей, преобразователей, электронном зажигании, регуляторах мощности.

https://youtube.com/watch?v=o08QmBk8Ou8

—> —>

Все радиокомпоненты устройства отечественные, но возможна их замена на аналогичные зарубежные. Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП. Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом. Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1. Амперметр РА1 — любой постоянного тока со шкалой на 10 ампер. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру. Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 ампер либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 ампер и обратное напряжение не менее 50 вольт (серии Д242, Д243, Д245, КД203, КД210, КД213). Диоды выпрямителя и тиристор ставят на алюминиевые радиаторы, площадью охлаждения от 120 кв.см. Для улучшения теплового контакта устройств с радиаторами обязательно смазать теплопроводные пасты. Тиристор КУ202В заменим на КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.

В устройстве применен готовый сетевой понижающий трансформатор соответствующей мощности с напряжением вторичной обмотки от 18 до 22 вольт. Если у трансформатора напряжение на вторичной обмотке выше чем 18 вольт, резистор R5 желательно сменить другим, наибольшего сопротивления (к примеру, при 24 — 26 вольт сопротивление резистора соответственно увеличить до 200 Ом). В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах. При напряжении вторичной обмотки 28 х 36 вольт можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е). Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 ампер.

Оцените статью:
Оставить комментарий
Adblock
detector