Особенности сопротивления проводников

Как найти сечение провода ? как определить сечение провода по диаметру ? Естественные науки

27 декабря 2018

Автор КакПросто!

Под сечением провода понимают площадь его поперечного сечения. Ее можно узнать непосредственно при покупке провода. Если это не удалось, измерьте диаметр провода штангенциркулем и посчитайте площадь поперечного сечения как площадь круга. Также площадь поперечного сечения можно найти с помощью амперметра, вольтметра и линейки.

Вам понадобится

штангенциркуль, линейка, амперметр, вольтметр и таблица удельных сопротивлений веществ.

Инструкция

Линейкой измерьте его длину и переведите ее в метры. Перемножьте значения удельного сопротивления материала проводника, его длины и силы тока, протекающего по проводнику. Полученное значение поделите на напряжение, измеренное на проводнике (S=ρ•l•I/U). Результатом будет площадь поперечного сечения провода в мм². Для того чтобы получить результат в м², нужно полученное число умножить на 10^(-6).

Видео по теме

https://youtube.com/watch?v=_R8QhB10_ds

Совет полезен?

Не получили ответ на свой вопрос?Спросите нашего эксперта:

Преимущества и недостатки термометров сопротивления

При сравнении с термопарой можно упомянуть следующие минусы ТС:

  • высокую стоимость;
  • обязательное использование внешнего источника стабилизированного электропитания;
  • ограниченный рабочий диапазон.

Плюсы:

  • линейный график измеряемых параметров;
  • точность;
  • корректная компенсация искажений от соединительных проводов.

Выбор подходящего датчика организуют на основе подготовленных критериев. Кроме базовых технических параметров, уточняют допустимые габариты, условия эксплуатации. Для продления срока службы необходимы регулярные проверки состояния термосопротивления и других компонентов измерительной схемы.

Для чего нужен расчет сечения кабеля

При покупке кабеля вы можете увидеть различные обозначения. К примеру, провод 3×5 содержит три токоведущие жилы, каждая из которых имеет сечение по 5 кв. мм. Зная это, достаточно заглянуть в таблицу напряжения и мощности.

Только правильно рассчитанное сечение гарантирует отсутствие участков с перегревами кабеля. При этом провод должен выдерживать временные нагрузки, когда величина тока в 2-3 раза больше номинального значения

Вы получите запас по току, что важно, поскольку в любой момент нагрузка на сеть может возрасти из-за новых бытовых приборов. Отсутствие нагрева исключит самовозгорание и пожары на объектах

Этот момент нужно продумать заранее, поскольку в большинстве случаев используется скрытый метод монтажа электропроводки, и малейшее повреждение может привести к необходимости замены целой линии.

Электрическая мощность бытовых приборов

Основные понятия

Любое металлическое изделие состоит из кристаллической решетки. Через нее проходят электроны, подвижные частицы, из-за чего электричество трансформируется в тепловую энергию. Данное свойство с успехом используется производителями обогревателей и осветительных приборов. Однако в обычных электрических системах перегрев кабеля недопустим, поскольку он со временем приведет к нарушению изоляцию и воспламенению

Поэтому важно подобрать правильное сечение проводников, чтобы те выдерживали допустимые (потенциальные) токовые нагрузки сети

Для этого учитываются два термина:

  • сечение провода;
  • плотность тока.

Зависимость плотности тока от сечения

Даже если будет подобрано правильное сечение провода, он все равно может перегреться. Причин несколько: слабый контакт в местах соединения или окисления, связанные с недопустимой скруткой алюминиевой и медной жил.

Сечение провода

Для выбора сечения токоведущей жилы (проводника, а не всего кабеля с оболочкой и изоляцией) ориентируются по двум параметрам:

  • нагрев в допустимых пределах;
  • потеря напряжения.

Опасным является перегрев подземного кабеля, помещенного в пластиковые трубки рукава

В воздушных линиях электропередач уделяется внимание потери напряжения. Для комбинированных отрезков с двумя разными сечениями следует выбрать большее, округлив его до стандартного значения

Перед расчетом сечения или поиском подходящих табличных величин следует определить, какими будут условия эксплуатации.

Неверный выбор сечения кабеля может привести к перегреву и возгоранию

Для расчета потенциального нагрева нужно учитывать длительно допустимую температуру. Величина напрямую зависит от возможной силы тока Iп. После использования формулы вы получите расчетный ток Iр, который должен отличаться от Iп и быть меньше его значения (ни в коем случае не больше!). При выборе сечения используют следующую формулу:

Iр = Pн/Uн,

где:

  • Pн — номинальная мощность, Вт;
  • Uн — номинальное напряжение, В.

Пользоваться данной формулой можно для расчета токов в проводниках с уже устоявшейся температурой при условии, что на кабель не влияют другие охлаждающие или согревающие факторы. Величина длительно допустимого тока Iп зависит от разных параметров: сечение, материал изготовления, изоляционная оболочка и способ монтажа.

Чтобы проверить падение напряжения на воздушной линии электропередач, пользуются следующей формулой:

Uп = (U — Uн) *100/ Uн,

где:

  • U — напряжения от источника;
  • Uн — напряжение в месте, где подключается приемник напряжения.

Максимально допустимое отклонение напряжения — 10%.

Плотность тока

Данная физическая величина является векторной. Для ее обозначения используют латинскую букву J. Формула расчета выглядит следующим образом:

J = I/S,

где:

  • I — сила тока, А;
  • S — площадь поперечного сечения, кв. мм.

Предельная плотность тока для алюминиевых и медных проводов

Плотностью тока называют объем тока, который проходит через проводник заданного сечения за определенный отрезок времени. Измеряется в А/кв. мм.

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.

Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения

Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.

Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.

Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление

Температурная корреляция

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Открытая и закрытая прокладка проводов

Электрическая проводка может быть двух типов:

  • закрытая;
  • открытая.

В большинстве случаев для квартир применяют скрытый монтаж. При помощи перфоратора или штробореза в стене или на потолке создают специальные углубления, в которые укладывается кабель. Дополнительно он может быть помещен в гофрированные трубки или рукава. Спрятав кабель, углубления следует заделать при помощи штукатурки. Единственным допустимым вариантом для современной скрытой проводки являются медные проводники. При этом следует заранее продумать потенциальное наращивание сети или процесс частичной замены ее компонентов. В идеале нужно применять провода плоской формы.

Укладка скрытой проводки в штробах

Открытая электропроводка подразумевает размещение кабеля вдоль поверхностей. Используются преимущественно гибкие проводники с круглой формой сечения. Они размещаются в кабель-каналах или пропускаются через гофры. При расчете нагрузки обязательно учитывается метод укладки кабеля.

Зависимость от свойств материала

Материал проводника в основном определяет реакцию на приложенное напряжение. Наименьшим сопротивлением обладают металлы. Хотя среди них существует большая разница в этом свойстве. Современная теория объясняет это строением атомов металлов. Для любого проводника его свойство быть таковым объясняется наличием свободных заряженных частиц. В металлах это электроны, в жидкостях и газах – ионы. Приложенное к проводнику напряжение вызывает их движение.

Чем слабее воздействие, препятствующее перемещающимся зарядам, тем меньше СП. Для оценки материла проводника введено понятие удельного сопротивления. Оно применимо к тем веществам, из которых можно получить проводник длиной 1 м с поперечником в 1 кв. мм. Что получается в результате изготовления такого проводника из некоторых материалов, наглядно демонстрирует изображение далее.


Сопротивление различных металлов

Если длина проводника будет больше одного метра, его сопротивление увеличится, а при увеличении поперечника – уменьшится. Эти закономерности можно проверить опытным путем, используя, например, батарейку, отрезок проволоки из нихрома и мультиметр. В результате получаем формулу, которая подтверждена экспериментально. В ней обозначим:

  • R – сопротивление,
  • ρ – удельное сопротивление,
  • l – длина,
  • S – площадь поперечного сечения.

Формула получится такой:

R= ρ*l/S.


Поясняющее изображение для удельного сопротивления

Но эта формула не дает исчерпывающего представления обо всех ситуациях, для которых имеет значение сопротивление. Она будет применима лишь при определенных соответствиях удельного сопротивления температуре, а также постоянном напряжении. То есть это формула для расчета активного СП при заданной температуре. Если температура проводника увеличится, усилится так называемое броуновское движение в его материале. Как результат этого – более затрудненное перемещение электронов и увеличение СП.


Броуновское движение

И наоборот. Охлаждение проводника создает лучшие условия для беспрепятственного перемещения электронов, и при определенных температурах может привести к минимальным величинам сопротивления. Это явление получило название сверхпроводимости. Оно связано по температурным показателям с химическим составом материала проводника и существенно различается для разных металлов и прочих химических элементов, а также их соединений.


Зависимость сопротивления от температуры

Последовательное и параллельное сопротивление

По схеме последовательного соединения резистор может подключиться к другому резистору только в одной точке, но в цепи таких последовательных точек может быть несколько. Как пример примем обозначения R1, R2, R3 для сопротивления и Uц для напряжения источника цепи. Как только включится подача питания, в цепи начнет проходить ток Iц. Таким образом, электричество протекает в каждом резисторе по очереди.


Схема последовательного соединения резисторов

Учитывая то, что ток проходит через каждый резистор, то значения их сопротивлений и силы тока будут суммироваться, то есть Iц = I1+I2+I3 и Rц = R1 +R2 + R3. В таком случае, чем больше будет каждое отдельное значение, тем тяжелее электронам преодолеть участок цепи. Особенность резисторов в том, что для расчета их мощности для разных типов соединения необходимо использовать разные формулы: для последовательных цепей — складываем, для параллельных — это должна быть обратная величина.

В таком варианте соединения элементы следуют друг за другом, поэтому конец одного будет соединяться с началом другого. Во время подключения этой схемы к сети образуется кольцо.

При параллельном соединении резисторы соединяются двумя контактами: так, к одной точке можно присоединить несколько резисторов.

Общее сопротивление всех элементов на участке цепи станет ниже при таком типе. Высчитывать его необходимо по формуле:

Формула общего сопротивления всех элементов на участке цепи

Формула расчета усложняется с увеличением числа элементов, которые соединены параллельно. На практике довольно редко кто-то объединяет больше 3 элементов, поэтому для сложного расчета будет достаточно знать следующие формулы:


Схемы и формулы расчета сопротивления

Важно знать, что при подстановке значений итоговый результат сопротивления параллельно присоединенных резисторов будет ниже самого маленького числа

Расчет сопротивления провода по сечению, диаметру, длине

В своей работе электрик часто сталкивается с вычислением различных величин и преобразований. Так для корректного подбора кабеля приходится подбирать нужное сечение. Логика выбора сечения основана на зависимости сопротивления от длины линии и площади сечения проводника. В этой статье мы рассмотрим, как выполняется расчет сопротивления провода по его геометрическим размерам.

Формула для расчета

Любые вычисления начинаются с формулы. Основной формулой для расчета сопротивления проводника является:

R=(ρ*l)/S

Где R – сопротивление в Омах, ρ – удельное сопротивление, l – длина в м, S – площадь поперечного сечения провода в мм2.

Эта формула подходит для расчета сопротивления провода по сечению и длине. Из неё следует, что в зависимости от длины изменяется сопротивление, чем длиннее – тем больше. И от площади сечения – наоборот, чем толще провод (большое сечение), тем меньше сопротивление. Однако непонятной остаётся величина, обозначенная буквой ρ (Ро).

Удельное сопротивление

Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.

Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм2/м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.

Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает переходное контактное сопротивление, повышает срок службы и уменьшает нагрев контактов. При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.

У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10-8 Ом*мм2/м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют медную электропроводку. У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10

-6 Ом*мм2/м.

Расчет по диаметру

На практике часто бывает так, что площадь поперечного сечения жилы не известна. Без этого значения ничего рассчитать не получится. Чтобы узнать её, нужно измерить диаметр. Если жила тонка, можно взять гвоздь или любой другой стержень, намотать на него 10 витков провода, обычной линейкой измерить длину получившейся спирали и разделить на 10, так вы узнаете диаметр.

Ну, или просто замерить штангенциркулем. Расчет сечения выполняется по формуле:

Обязательны ли расчеты?

Как мы уже сказали, сечение провода выбирают исходя из предполагаемого тока и сопротивления металла, из которого изготовлены жилы. Логика выбора заключается в следующем: сечение подбирают таким способом, чтобы сопротивление при заданной длине не приводило к значительным просадкам напряжения. Чтобы не проводить ряд расчетов, для коротких линий (до 10-20 метров) есть достаточно точные таблицы:

В этой таблице указаны типовые значения сечения медных и алюминиевых жил и номинальные токи через них. Для удобства указана мощность нагрузки, которую выдержит эта линия

Обратите внимание на разницу в токах и мощности при напряжении 380В, естественно, что это предполагается трёхфазная электросеть

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, как рассчитать сечение проводника, а также предоставлены примеры расчетных работ:

https://youtube.com/watch?v=9ByGynkMIPY

Расчет сопротивления провода сводится к использованию пары формул, при этом вы можете скачать готовые калькуляторы из Плэй Маркета для своего смартфона, например, «Electrodroid» или «Мобильный электрик». Эти знания пригодятся для расчетов нагревательных приборов, кабельных линий, предохранителей и даже популярных на сегодняшний день спиралей для электронных сигарет.

Материалы по теме:

Оцените статью:
Оставить комментарий