Формулы, позволяющие рассчитать сопротивление для понижения напряжения

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е — электродвижущая сила, Е = const
Ro = 0 — внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I — мощность и ток в цепи постоянного тока.

р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля — Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Параллельное соединение

КПД источника тока

Когда условные выходы деталей имеют общий контакт в одной точке (узле) схемы, а условные входы так же объединены во второй, говорят о параллельном соединении. Узел на чертеже обозначается графической точкой. Это место, где происходят разветвления цепей в схемах. Такой вариант подключения резисторов обеспечивает одинаковое падение напряжения U для всех параллельных элементов. Ток в этой позиции будет равен сумме токов, идущих по каждому компоненту.

Когда в параллельное подключение входит n резистивных элементов, то разность потенциалов, ток и общее сопротивление будут иметь следующие выражения:

  • общий ток: I = I1 + I2 + … + In;
  • общее напряжение: U = U1 = U2 = … = Un;
  • Rобщ. = Rэкв. = U/I1 + U/I2 + …+ U/In) = 1/R1 + 1/R2 +…+ 1/Rn.

Величину, обратно пропорциональную сопротивлению 1/R, называют проводимостью.

Если n равных по номиналу сопротивлений включить параллельно, то Rэкв. = (R*R)/n*R = R/n. Формула подходит и для индуктивных сопротивлений проволочных катушек и ёмкостных сопротивлений конденсаторов.


Параллельное включение резисторов

Комплексное сопротивление

Комплексное сопротивление — полное сопротивление цепи, обладающей активным и реактивным сопротивлением, выраженное в виде комплексного числа, модуль которого равен полному сопротивлению, а аргумент равен углу сдвига фаз между током и напряжением цепи.

Представление тригонометрической функции посредством вектора, вращающегося в комплексной числовой плоскости.

Комплексное сопротивление или проводимость какого-либо элемента определяют его реакцию на напряжение или ток.

Пересчет по — соединение ( а ( 3 — 6 следовательно со — пересчитать в парал.

Комплексное сопротивление может быть получено посредством последовательного го-единшия, а комплексная проводимость — посредством параллельного соединения; поэтому приведенные ф-лы служат для пересчета параллельного включения в последовательное и наоборот.

Комплексное сопротивление — полное сопротивление ( см.) цепи, которая обладает как активным, так и реактивным сопротивлением.

Схема включения лого-метрического измерителя сопротивления заземления.| Эквивалентная схема из мерителя заземления компенсационного типа.

Комплексное сопротивление является одной из важных характеристик участка ( пасивного элемента) электрической цепи переменного тока. Следует отметить, что понятие комплексного сопротивления имеет смысл лишь при условии, что в электрической цепи действуют синусоидальные напряжения и токи. Поэтому измерения комплексных сопротивлений и их составляющих должны проводиться с соблюдением этих условий. При несинусоидальных напряжении и токе результат измерения может быть получен лишь для определенных гармоник путем использования специальных избирательных устройств.

Комплексное сопротивление равно 3 / 5 ом.

Комплексное сопротивление равно 3 / 5 Ом.

Комплексное сопротивление Z12 является взаимным сопротивлением для входного и выходного контуров, поскольку по нему протекают одновременно входной и выходной токи.

Комплексное сопротивление и его вещественная и мнимая составляющие могут быть представлены на комплексной плоскости ( рис. 12 — 6) в виде треугольника сопротивлений.

Комплексное сопротивление состоит из активной и реактивной составляющих. При этом очень полезно воспользоваться аналогиями из теории электрических цепей.

Комплексные сопротивления, например входные сопротивления антенн, изменяются в зависимости от частоты. Здесь стрелкой показано направление, в котором увеличивается частота. Только в пределах небольших диапазонов в виде исключения возможно движение в обратном направлении. Эти полученные экспериментально результаты можно подтвердить строгими теоретическими выводами, что, однако, вышло бы за рамки настоящей работы.

Схема кварцевого автогенератора с двумя кварцевыми резонаторами, имеющими противоположные ТЧХ.

Что такое электричество.

Электричество – это совокупность физических явлений, связанных с возникновением, накоплением, взаимодействием и переносом электрического заряда. По мнению большинства историков науки, первые электрические явления были открыты древнегреческим философом Фалесом в седьмом веке до нашей эры. Фалес наблюдал действие статического электричества: притяжение к натертому шерстью янтарю легких предметов и частичек. Чтобы повторить этот опыт самостоятельно вам необходимо потереть о шерстяную или хлопковую ткань любой пластиковый предмет (например, ручку или линейку) и поднести его к мелконарезанным кусочкам бумаги.

Первой серьезной научной работой, в которой описаны исследования электрических явлений стал трактат английского ученого Уильяма Гилберта «О магните, магнитных телах и большом магните – Земле» изданный в 1600 г. В этой работе автор описал результаты своих опытов с магнитами и наэлектризованными телами. Здесь же впервые упоминается термин электричество.

Исследования У. Гилберта дали серьезный толчок развитию науки об электричестве и магнетизме: за период с начала 17 до конца 19 века было проведено большое количество экспериментов и сформулированы основные законы, описывающие электромагнитные явления. А в 1897 году английский физик Джозеф Томсон открыл электрон – элементарную заряженную частицу, которая определяет электрические и магнитные свойства вещества. Электрон (на древнегреческом языке электрон – это янтарь) имеет отрицательный заряд примерно равный 1,602*10-19 Кл (Кулона) и массу равную 9,109*10-31 кг. Благодаря электронам и другим заряженным частицам происходят электрические и магнитные процессы в веществах.

Электрический ток

Как я уже сказал, этих пастухов с овцами в веществах миллиарды. Следовательно, овец, которые находятся очень далеко от пастуха, еще больше. И вот эти самые овцы гуляют подальше от пастухов и в любой момент могут дать дёру.

Теперь представьте такую ситуацию. Где-то недалеко от этих пастухов находится большое колхозное поле со свежей капустой. И как только свободные овцы это дело просекли (“а почему бы нам не сБЕ-БЕ-БЕжать и полакомиться капустой?”), сразу же всей толпой двинулись “покорять” это поле!

В результате возник поток овец, которые движутся в одну сторону.

Все те же самые процессы происходят и в металле. Как только все свободные электроны начнут двигаться в одном направлении, возникнет электрический ток:

Электрический ток – это упорядоченное движение заряженных частиц, чаще всего электронов, в одном направлении. По аналогии с гидравликой, электроны – это молекулы воды. Электрический ток – поток воды. Думаю, этого пока будет достаточно. Одними словами сыт не будешь, поэтому давайте нарисуем рисунок, чтобы порадовать глаза:

В данный момент шланг валяется где-нибудь в огороде и в нем осталась вода. Шланг никуда не подключен, то есть молекулы воды в шланге находятся в неподвижном состоянии.

По аналогии с электроникой, медный проводок лежит на столе и никуда не подключен.

Но вот настал вечер. Надо полить помидоры и огурцы, иначе к зиме останетесь без закуски. Как только мы открываем кран, вода в шланге начинает движуху:

Теперь вопрос на засыпку: почему когда мы открыли краник, вода побежала по шлангу?  Создалось давление… молекулы что левее стали давить на молекулы что правее и движуха началась. Но кто толкал те молекулы, которые толкали молекулы? Это либо насос, либо вода в водобашне под воздействием гравитационной силы Земли.

В электронике электроны толкает так называемая ЭДС. В любой электрической схеме есть тот самый “насос”, который толкает электроны по проводкам и радиоэлементам. Он может находится в самой схеме, либо подключаться в схему извне. Как только электроны начинают движуху в проводке в одном направлении, то можно уже сказать, что в проводке стал течь электрический ток.

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + … + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:

Rобщ = R1 + R2 + … + Rn.

Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.

Пример:

  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.

Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:

Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.

Расчет подтвердил отсутствие ошибок.

Параллельное соединение резисторов

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.

Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:

I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.

Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

Последовательное преобразование схемы для упрощения вычислений

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Что такое напряжение.

Перемещение заряженных частиц в телах и веществах происходит благодаря разности потенциалов или электрическому напряжению. Напряжение (напряжение тока) — это физическая величина равная отношению работы электрического поля затраченной на перенос электрического заряда из одной точки в другую (между полюсами) к этому заряду. Напряжение измеряется в Вольтах (В) и обозначается буквой V. Для того чтобы переместить между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль), необходимо напряжение тока равное 1 В.

Для лучшего понимания взаимосвязей между разностью потенциалов, электрическим зарядом и током воспользуемся следующим наглядным примером. Представим емкость с трубой внизу, наполненную до определенного уровня водой. Условимся, что количество воды соответствует величине заряда, высота воды в емкости (давление столба жидкости) – это напряжение, а интенсивность выхода потока воды из трубы – это электрический ток.

Чем больше воды в резервуаре, тем больше высота столба воды и выше давление. Аналогично в электрических явлениях: чем больше величина заряда, тем выше напряжение необходимое для его переноса. Начнем выпускать воду: давление в резервуаре будет уменьшаться. Т. е. с уменьшением величины заряда – снижается напряжение тока. Также наглядно это видно при работе фонарика с начавшими разряжаться батарейками: по мере того как разряжаются батарейки яркость лампочки становится все меньше и меньше.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.


ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит

Виды пассивных элементов

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Подсоединение конденсатора в электроцепь

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

  1. Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид

  2. Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3  и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Как правильно рассчитать при смешанном соединении устройств

Смешанным подключением устройств называется такой тип, при котором часть взаимозаменяемых компонентов подключается последовательно, а часть — параллельно. При смешанном подсоединении устройств определить эквивалентный показатель сопротивляемости несложно. Достаточно использовать следующую формулу: (R1 + R2) R3 / (R1 + R2 + R3) + R4.

Это соединение используется, чтобы изменить сопротивляемость в пусковых реостатах, питающихся от постоянного тока. Для подсчета используются специальные онлайн-сервисы. Это помогает быстрее вычислить, упростить и ускорить расчеты электротехнических параметров.

Формула расчета при смешанном соединении устройств

В результате, чтобы рассчитать эквивалентное сопротивление цепи, необходимо вспомнить про закон Ома и обязательно пользоваться указанными формулами выше. Только при смешенном типе соединения желательно вести подсчеты в онлайн-калькуляторах, так как есть риск допустить ошибку в расчетах.

Оцените статью:
Оставить комментарий
Adblock
detector